• Title/Summary/Keyword: Sparse signal processing

Search Result 33, Processing Time 0.025 seconds

Cyclic Shift Based Tone Reservation PAPR Reduction Scheme with Embedding Side Information for FBMC-OQAM Systems

  • Shi, Yongpeng;Xia, Yujie;Gao, Ya;Cui, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2879-2899
    • /
    • 2021
  • The tone reservation (TR) scheme is an attractive method to reduce peak-to-average power ratio (PAPR) in the filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) systems. However, the high PAPR of FBMC signal will severely degrades system performance. To address this issue, a cyclic shift based TR (CS-TR) scheme with embedding side information (SI) is proposed to reduce the PAPR of FBMC signals. At the transmitter, four candidate signals are first generated based on cyclic shift of the output of inverse discrete Fourier transform (IDFT), and the SI of the selected signal with minimum peak power among the four candidate signals is embedded in sparse symbols with quadrature phase-shift keying constellation. Then, the TR weighted by optimal scaling factor is employed to further reduce PAPR of the selected signal. At the receiver, a reliable SI detector is presented by determining the phase rotation of SI embedding symbols, and the transmitted data blocks can be correctly demodulated according to the detected SI. Simulation results show that the proposed scheme significantly outperforms the existing TR schemes in both PAPR reduction and bit error rate (BER) performances. In addition, the proposed scheme with detected SI can achieve the same BER performance compared to the one with perfect SI.

Time delay estimation between two receivers using basis pursuit denoising (Basis pursuit denoising을 사용한 두 수신기 간 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • Many methods have been studied to estimate the time delay between incoming signals to two receivers. In the case of the method based on the channel estimation technique, the relative delay between the input signals of the two receivers is estimated as an impulse response of the channel between the two signals. In this case, the characteristic of the channel has sparsity. Most of the existing methods do not take advantage of the channel sparseness. In this paper, we propose a time delay estimation method using BPD (Basis Pursuit Denoising) optimization technique, which is one of the sparse signal optimization methods, in order to utilize the channel sparseness. Compared with the existing GCC (Generalized Cross Correlation) method, adaptive eigen decomposition method and RZA-LMS (Reweighted Zero-Attracting Least Mean Square), the proposed method shows that it can mitigate the threshold phenomenon even under a white Gaussian source, a colored signal source and oceanic mammal sound source.

Non-Iterative Threshold based Recovery Algorithm (NITRA) for Compressively Sensed Images and Videos

  • Poovathy, J. Florence Gnana;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4160-4176
    • /
    • 2015
  • Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.

An Error Correcting High Rate DC-Free Multimode Code Design for Optical Storage Systems (광기록 시스템을 위한 오류 정정 능력과 높은 부호율을 가지는 DC-free 다중모드 부호 설계)

  • Lee, June;Woo, Choong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.226-231
    • /
    • 2010
  • This paper proposes a new coding technique for constructing error correcting high rate DC-free multimode code using a generator matrix generated from a sparse parity-check matrix. The scheme exploits high rate generator matrixes for producing distinct candidate codewords. The decoding complexity depends on whether the syndrome of the received codeword is zero or not. If the syndrome is zero, the decoding is simply performed by expurgating the redundant bits of the received codeword. Otherwise, the decoding is performed by a sum-product algorithm. The performance of the proposed scheme can achieve a reasonable DC-suppression and a low bit error rate.

다중채널 압축센싱

  • Kim, Jong-Min;Lee, Ok-Gyun;Ye, Jong-Cheol
    • The Magazine of the IEIE
    • /
    • v.38 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • 다중채널 압축센싱(multi-channel compressive sensing) 문제는 0이 아닌 성분이 공통된 위치에 분포하는 벡터들을 복원하는 방법을 다루는 문제이며 레이다의 도착방향 추정 문제, 역산란 문제, 산란광 단층촬영과 같은 많은 실용적인 문제에 응용될 수 있다. 압축 센싱 문제는 성긴(sparse) 속성을 갖는 벡터를 상당히 높은 확률로 복원시킬 수 있음이 밝혀져 있다. 이로 인해 기존의 압축 센싱 방법이 다중채널 압축센싱에서도 많이 활용되어 왔으며, 측정 벡터의 개수가 적을 때에도 높은 확률로 입력 신호를 복원할 수 있다. 그러나, 측정 벡터의 개수가 많아질수록, 기존의 압축센싱 알고리즘을 이용했을 때의 성능은 복수신호분리 (MUSIC) 알고리즘과 같이 배열신호처리(array signal processing)에서 활용되는 방법을 적용했을 때보다 더 나쁜 특성을 보인다. 이러한 기존 방법의 문제점으로 인해 우리는 새로운 다중채널 압축센싱 알고리즘을 제시하고자 하며, 이는 기존의 압축센싱 이론과 배열 신호처리 알고리즘을 개별적으로 적용할 때 가지는 한계를 극복할 수 있게 해준다.

  • PDF

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Classification of General Sound with Non-negativity Constraints (비음수 제약을 통한 일반 소리 분류)

  • 조용춘;최승진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1412-1417
    • /
    • 2004
  • Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditor${\gamma}$ processing and to the task of sound classification. In contrast, parts-based representation is an alternative way o) understanding object recognition in brain. In this thesis we employ the non-negative matrix factorization (NMF) which learns parts-based representation in the task of sound classification. Methods of feature extraction from the spectro-temporal sounds using the NMF in the absence or presence of noise, are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

Sparsification of Digital Images Using Discrete Rajan Transform

  • Mallikarjuna, Kethepalli;Prasad, Kodati Satya;Subramanyam, M.V.
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.754-764
    • /
    • 2016
  • The exhaustive list of sparsification methods for a digital image suffers from achieving an adequate number of zero and near-zero coefficients. The method proposed in this paper, which is known as the Discrete Rajan Transform Sparsification, overcomes this inadequacy. An attempt has been made to compare the simulation results for benchmark images by various popular, existing techniques and analyzing from different aspects. With the help of Discrete Rajan Transform algorithm, both lossless and lossy sparse representations are obtained. We divided an image into $8{\times}8-sized$ blocks and applied the Discrete Rajan Transform algorithm to it to get a more sparsified spectrum. The image was reconstructed from the transformed output of the Discrete Rajan Transform algorithm with an acceptable peak signal-to-noise ratio. The performance of the Discrete Rajan Transform in providing sparsity was compared with the results provided by the Discrete Fourier Transform, Discrete Cosine Transform, and the Discrete Wavelet Transform by means of the Degree of Sparsity. The simulation results proved that the Discrete Rajan Transform provides better sparsification when compared to other methods.

Time Delay Estimation Using LASSO (Least Absolute Selection and Shrinkage Operator) (LASSO를 사용한 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Guk;Choi, Seok-Im
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.715-721
    • /
    • 2014
  • In decades, many researchers have studied the time delay estimation (TDE) method for the signals in the two different receivers. The channel estimation based TDE is one of the typical TDE methods. The channel estimation based TDE models the time delay between two receiving signals as an impulse response in a channel between two receivers. In general the impulse response becomes sparse. However, most conventional TDE algorithms cannot have utilized the sparsity. In this paper, we propose a TDE method taking the sparsity into consideration. The performance comparison shows that the proposed algorithm improves the estimation accuracy by 10 dB in the white gaussian source. In addition, even in the colored source, the proposed algorithm doesn't show the estimation threshold effect.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.