• Title/Summary/Keyword: Sparse Systems

Search Result 273, Processing Time 0.032 seconds

A Development of Personalized Recommendation System using Spark GraphX (Spark GraphX를 활용한 개인 추천 시스템 개발)

  • Kim, Sungsook;Park, Kiejin;Lu, Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.41-43
    • /
    • 2018
  • 소설 데이터는 인터넷 상의 수 많은 개인과 개인의 상호 작용에 의하여 연결되어 있으며, 이러한 데이터를 분석하여, 분석 대상에 내재하고 있는 구조와 특성을 파악하는 일은 중요하다. 특히, 개인 추천을 위해서는 개별 데이터들의 관계 그래프를 활용하여 빠르고 정확하게 추천 값을 도출하는 것이 효율적이다. 하지만, 기존 추천 기법으로는 신규 사용자와 아이템이 끊임없이 등장하는 상황을 즉각적으로 반영하기가 어렵고, 또한 많은 결측값을 포함하는 sparse 한 데이터일 경우에는 추천 시스템의 연산 공간과 시간에 많은 제약이 있다. 이에 본 논문에서는 Spark GraphX 를 활용한 개인 추천 시스템을 설계 및 개발하였으며, 이를 통하여 사용자와 아이템간에 내재하는 복합 요인이 반영된 그래프 기반 추천을 실행하여, 개인 추천 결과의 우수성을 확인하였다.

Inverted Index based Modified Version of KNN for Text Categorization

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of KNN to be adaptable to string vectors for text categorization. Traditionally, when KNN are used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text categorization, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the supervised learning algorithms adaptable to string vectors for text categorization.

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

A Spectral-Galerkin Nodal Method for Salving the Two-Dimensional Multigroup Diffusion Equations

  • Hongwu Cheng;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.157-162
    • /
    • 1996
  • A novel nodal method is developed for the two-dimensional multi-group diffusion equations based on the Spectral-Galerkin approach. In this study, the nodal diffusion equations with Robin boundary condition are reformulated in a weak (variational) form, which is then approximated spatially by choosing appropriate basis functions. For the nodal coupling relations between the neighbouring nodes, the continuity conditions of partial currents are utilized. The resulting discrete systems with sparse structured matrices are solved by the Preconditioned Conjugate Gradient Method (PCG) and sweeping technique. The method is validated on two test problems.

  • PDF

Avoiding collaborative paradox in multi-agent reinforcement learning

  • Kim, Hyunseok;Kim, Hyunseok;Lee, Donghun;Jang, Ingook
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1004-1012
    • /
    • 2021
  • The collaboration productively interacting between multi-agents has become an emerging issue in real-world applications. In reinforcement learning, multi-agent environments present challenges beyond tractable issues in single-agent settings. This collaborative environment has the following highly complex attributes: sparse rewards for task completion, limited communications between each other, and only partial observations. In particular, adjustments in an agent's action policy result in a nonstationary environment from the other agent's perspective, which causes high variance in the learned policies and prevents the direct use of reinforcement learning approaches. Unexpected social loafing caused by high dispersion makes it difficult for all agents to succeed in collaborative tasks. Therefore, we address a paradox caused by the social loafing to significantly reduce total returns after a certain timestep of multi-agent reinforcement learning. We further demonstrate that the collaborative paradox in multi-agent environments can be avoided by our proposed effective early stop method leveraging a metric for social loafing.

Semi-supervised Cross-media Feature Learning via Efficient L2,q Norm

  • Zong, Zhikai;Han, Aili;Gong, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1403-1417
    • /
    • 2019
  • With the rapid growth of multimedia data, research on cross-media feature learning has significance in many applications, such as multimedia search and recommendation. Existing methods are sensitive to noise and edge information in multimedia data. In this paper, we propose a semi-supervised method for cross-media feature learning by means of $L_{2,q}$ norm to improve the performance of cross-media retrieval, which is more robust and efficient than the previous ones. In our method, noise and edge information have less effect on the results of cross-media retrieval and the dynamic patch information of multimedia data is employed to increase the accuracy of cross-media retrieval. Our method can reduce the interference of noise and edge information and achieve fast convergence. Extensive experiments on the XMedia dataset illustrate that our method has better performance than the state-of-the-art methods.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

A pilot study of the two OB associations Cygnus OB2 and Carina OB1 using the Gaia data

  • Lim, Beomdu;Naze, Yael;Gosset, Eric;Rauw, Gregor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2019
  • We present a kinematic study of the two young OB associations Cygnus OB2 and Carina OB1 using the recently released Gaia astrometric data. The unimodal distributions of parallaxes of stars indicate that these associations are real stellar systems, rather than line-of-sight coincidences. The associations are found to comprise dense star clusters and a sparse halo which have different proper motions. Clusters have small spatial sizes with small dispersions in proper motion, while the haloes extending to tens of parsecs have a large dispersion in proper motion. We speculate that this aspect is related to that found in molecular clouds, the so-called "line width-size" relation. In this talk, the formation process of these associations is discussed, based on our findings.

  • PDF

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

A study on modified biorthogonalization method for decreasing a breakdown condition

  • Kim, Sung-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.5
    • /
    • pp.59-66
    • /
    • 2002
  • Many important scientific and engineering problems require the computation of a small number of eigenvalues for large nonsymmetric matrices. The biorthogonal Lanczos method is one of the methods to solve that problem, but it faces serious breakdown problems. In this paper, we introduce a modified biorthogonal Lanczos method to find a few eigenvalues of a large sparse nonsymmetric matrix. The proposed method generates reduction matrices that are similar to those generated by the standard biorthogonal Lanczos method. We prove that the breakdown conditions of our method are less stringent than the standard method. We then implement the modified biorthogonal Lanczos method on the CRAY machine and discuss the decreased breakdown conditions.

  • PDF