• Title/Summary/Keyword: Sparse Systems

Search Result 271, Processing Time 0.02 seconds

Study of Efficient Parallel Computation of Cholesky's Method in FE Mesh (유한요소망에서의 효율적인 직접해법 병렬계산에 관한 연구)

  • Lee, H.B.;Choi, K.;Kim, H.J.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.68-70
    • /
    • 1996
  • In this paper, an efficient parallel computation method for solving large sparse systems of linear algebraic equations by using Cholesky's method in the finite element method is studied. The methods of minimizing the number of fill-ins in the factorization process of factorization are investigated for minimizing the amount of memory and computation time. The parallel programming is implemented under the PVM(Parallel Virtual Machine) environment. The method of load-distribution is studied for minimizing the computation time and the communication time.

  • PDF

Investigating the Effects of Information Technology Investment on Productivity in the Chinese Electronics Industry

  • Xiang, Jun-Yong;Lee, Sang-Ho;Kim, Jae-Kyeong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • The importance of information technology (IT) has been emphasized in developing countries recently. Despite the importance of the topic area of the productivity of IT in developing countries, the literature to date is relatively sparse. The findings of almost all these studies are based on data collected in developed countries. Few studies have been conducted to validate these results and to see if they are still applicable in developing countries. This study tries to investigate the effects of IT investment on productivity in the electronics industry of China, which is a representative developing country, with production function model. The results show that there is a positive impact of IT investment on productivity in China similar to previous studies in developed countries.

  • PDF

Inverted Index based Modified Version of K-Means Algorithm for Text Clustering

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of k means algorithm to be adaptable to string vectors for text clustering. Traditionally, when k means algorithm is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text clustering, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the k means algorithm adaptable to string vectors for text clustering.

Neural Text Categorizer for Exclusive Text Categorization

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2008
  • This research proposes a new neural network for text categorization which uses alternative representations of documents to numerical vectors. Since the proposed neural network is intended originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research. Numerical vectors representing documents for tasks of text mining have inherently two main problems: huge dimensionality and sparse distribution. Although many various feature selection methods are developed to address the first problem, the reduced dimension remains still large. If the dimension is reduced excessively by a feature selection method, robustness of text categorization is degraded. Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to the second problem. The goal of this research is to address the two problems at same time by proposing a new representation of documents and a new neural network using the representation for its input vector.

USE OF AN ORTHOGONAL PROJECTOR FOR ACCELERATING A QUEUING PROBLEM SOLVER

  • Park, Pil-Seong
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.193-204
    • /
    • 1996
  • Overflow queuing models are ofter analyzed by explicitly solving a large sparse singular linear systems arising from Kolmogorov balance equation. The system is often converted into an eigenvalue problem the dominant eigenvector of which is the desired null vector. In this paper we convert an overflow queuing problem the dominant eigenvector of which is the desired null vector. In this paper we convert an overflow queuing problem into an overflow queuing problem into an eigen-value problem into an eigen-value problem of size 1/2 of the original. Then we devise an orthogonal projector that enhances its convergence by removing unsanted eigen-components effectively. Numerical result with some suggestion is given at the end.

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.

An algorithm for ultrasonic 3-dimensional reconstruction and volume estimation

  • Chin, Young-Min;Park, Sang-On;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.791-796
    • /
    • 1987
  • In this paper, an efficient algorithm to estimate the volume and surface area from ultrasonic imaging and a reconstruction algorithm to generate three-dimensional graphics are presented. The computing efficiency is Improved by using the graph theory and the algorithm to determine proper contour points is performed by applying several tolerances. The search for contour points is limited by the change in curvature in order to provide an efficient search of the minimum cost path. These algorithms are applied to a selected mathematical model of ellipsoid. The results show that the measured value of the volume and surface area for the tolerances of 1.0005, 1.001 and 1.002 approximate to the measured values for the tolerance of 1.000 resulting in small errors. The reconstructed 3-dimensional Images are sparse and consist of larger triangular tiles between two cross sections as tolerance is increased.

  • PDF

Eigen-analysis of SSR in Power Systems with Modular Network Model Equations (Modular 네트워크 모델 구성에 의한 전력계통 SSR 현상의 고유치해석)

  • Nam, Hae-Kon;Kim, Yong-Gu;Shim, Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1239-1246
    • /
    • 1999
  • This paper presents a new algorithm to construct the modular network model for SSR analysis by simply applying KCL to each node and KVL to all branches connected to the node sequentially. This method has advantages that the model can be derived directly from the system data for transient stability study and turbine/generator shaft model, the resulted model in the form of augmented state matrix is very sparse, and thus efficient SSR study of a large scale system becomes possible. The proposed algorithm is verified with the IEEE First and Second Benchmark models.

  • PDF