• Title/Summary/Keyword: Sparse Point Representation

Search Result 4, Processing Time 0.021 seconds

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

REAL-TIME 3D MODELING FOR ACCELERATED AND SAFER CONSTRUCTION USING EMERGING TECHNOLOGY

  • Jochen Teizer;Changwan Kim;Frederic Bosche;Carlos H. Caldas;Carl T. Haas
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.539-543
    • /
    • 2005
  • The research presented in this paper enables real-time 3D modeling to help make construction processes ultimately faster, more predictable and safer. Initial research efforts used an emerging sensor technology and proved its usefulness in the acquisition of range information for the detection and efficient representation of static and moving objects. Based on the time-of-flight principle, the sensor acquires range and intensity information of each image pixel within the entire sensor's field-of-view in real-time with frequencies of up to 30 Hz. However, real-time working range data processing algorithms need to be developed to rapidly process range information into meaningful 3D computer models. This research ultimately focuses on the application of safer heavy equipment operation. The paper compares (a) a previous research effort in convex hull modeling using sparse range point clouds from a single laser beam range finder, to (b) high-frame rate update Flash LADAR (Laser Detection and Ranging) scanning for complete scene modeling. The presented research will demonstrate if the FlashLADAR technology can play an important role in real-time modeling of infrastructure assets in the near future.

  • PDF

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar II. 2-D Quantitative Rainfall Estimation Using Cokriging (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 II. Cokriging을 이용한 2차원 정량강우 산정)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Gwang-Seob;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.335-346
    • /
    • 2006
  • Among various input data to hydrologic models, rainfall measurements arguably have the most critical influence on the performance of hydrologic model. Traditionally, hydrologic models have relied on point gauge measurements to provide the area-averaged rainfall information. However, rainfall estimates from gauges become inadequate due to their poor representation of areal rainfall, especially in situations with sparse gauge network. Alternatively, radar that covers much larger areas has become an attractive instrument for providing area- averaged precipitation information. Despite of the limitation of the QPE(Quantitative Precipitation Estimation) using radar, we can get the better information of spatial variability of rainfall fields. Also, rain-gauges give us the better quantitative information of rainfall field. Therefore, in this study, we developed improved methodologies tu estimate rainfall fields using an ordinary cokriging technique which optimally merges radar reflectivity data into rain-gauges data.