• 제목/요약/키워드: Sparse FCM

검색결과 3건 처리시간 0.025초

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

쾌 및 각성차원 기반 얼굴 표정인식 (Facial expression recognition based on pleasure and arousal dimensions)

  • 신영숙;최광남
    • 인지과학
    • /
    • 제14권4호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문은 내적상태의 차원모형을 기반으로 한 얼굴 표정인식을 위한 새로운 시스템을 제시한다. 얼굴표정 정보는 3단계로 추출된다. 1단계에서는 Gabor 웨이브렛 표상이 얼굴 요소들의 경계선을 추출한다. 2단계에서는 중립얼굴상에서 얼굴표정의 성긴 특징들이 FCM 군집화 알고리즘을 사용하여 추출된다. 3단계에서는 표정영상에서 동적인 모델을 사용하여 성긴 특징들이 추출된다. 마지막으로 다층 퍼셉트론을 사용하여 내적상태의 차원모델에 기반한 얼굴표정 인식을 보인다. 정서의 이차원 구조는 기본 정서와 관련된 얼굴표정의 인식 뿐만 아니라 다양한 정서의 표정들로 인식할 수 있음을 제시한다.

  • PDF