• Title/Summary/Keyword: Sparse FCM

Search Result 3, Processing Time 0.02 seconds

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

Facial expression recognition based on pleasure and arousal dimensions (쾌 및 각성차원 기반 얼굴 표정인식)

  • 신영숙;최광남
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents a new system for facial expression recognition based in dimension model of internal states. The information of facial expression are extracted to the three steps. In the first step, Gabor wavelet representation extracts the edges of face components. In the second step, sparse features of facial expressions are extracted using fuzzy C-means(FCM) clustering algorithm on neutral faces, and in the third step, are extracted using the Dynamic Model(DM) on the expression images. Finally, we show the recognition of facial expression based on the dimension model of internal states using a multi-layer perceptron. The two dimensional structure of emotion shows that it is possible to recognize not only facial expressions related to basic emotions but also expressions of various emotion.

  • PDF