• Title/Summary/Keyword: Sparse Bayesian Learning

Search Result 9, Processing Time 0.025 seconds

A study on the localization of incipient propeller cavitation applying sparse Bayesian learning (희소 베이지안 학습 기법을 적용한 초생 프로펠러 캐비테이션 위치추정 연구)

  • Ha-Min Choi;Haesang Yang;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.529-535
    • /
    • 2023
  • Noise originating from incipient propeller cavitation is assumed to come from a limited number of sources emitting a broadband signal. Conventional methods for cavitation localization have limitations because they cannot distinguish adjacent sound sources effectively due to low accuracy and resolution. On the other hand, sparse Bayesian learning technique demonstrates high-resolution restoration performance for sparse signals and offers greater resolution compared to conventional cavitation localization methods. In this paper, an incipient propeller cavitation localization method using sparse Bayesian learning is proposed and shown to be superior to the conventional method in terms of accuracy and resolution through experimental data from a model ship.

Computationally efficient variational Bayesian method for PAPR reduction in multiuser MIMO-OFDM systems

  • Singh, Davinder;Sarin, Rakesh Kumar
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.298-307
    • /
    • 2019
  • This paper investigates the use of the inverse-free sparse Bayesian learning (SBL) approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency-division multiplexing (OFDM)-based multiuser massive multiple-input multiple-output (MIMO) systems. The Bayesian inference method employs a truncated Gaussian mixture prior for the sought-after low-PAPR signal. To learn the prior signal, associated hyperparameters and underlying statistical parameters, we use the variational expectation-maximization (EM) iterative algorithm. The matrix inversion involved in the expectation step (E-step) is averted by invoking a relaxed evidence lower bound (relaxed-ELBO). The resulting inverse-free SBL algorithm has a much lower complexity than the standard SBL algorithm. Numerical experiments confirm the substantial improvement over existing methods in terms of PAPR reduction for different MIMO configurations.

A Method for Microarray Data Analysis based on Bayesian Networks using an Efficient Structural learning Algorithm and Data Dimensionality Reduction (효율적 구조 학습 알고리즘과 데이타 차원축소를 통한 베이지안망 기반의 마이크로어레이 데이타 분석법)

  • 황규백;장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.775-784
    • /
    • 2002
  • Microarray data, obtained from DNA chip technologies, is the measurement of the expression level of thousands of genes in cells or tissues. It is used for gene function prediction or cancer diagnosis based on gene expression patterns. Among diverse methods for data analysis, the Bayesian network represents the relationships among data attributes in the form of a graph structure. This property enables us to discover various relations among genes and the characteristics of the tissue (e.g., the cancer type) through microarray data analysis. However, most of the present microarray data sets are so sparse that it is difficult to apply general analysis methods, including Bayesian networks, directly. In this paper, we harness an efficient structural learning algorithm and data dimensionality reduction in order to analyze microarray data using Bayesian networks. The proposed method was applied to the analysis of real microarray data, i.e., the NC160 data set. And its usefulness was evaluated based on the accuracy of the teamed Bayesian networks on representing the known biological facts.

Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring (저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구)

  • Lee, Ukjun;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.

Improving the Classification Accuracy Using Unlabeled Data: A Naive Bayesian Case (나이브 베이지안 환경에서 미분류 데이터를 이용한 성능향상)

  • Lee Chang-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.457-462
    • /
    • 2006
  • In many applications, an enormous amount of unlabeled data is available with little cost. Therefore, it is natural to ask whether we can take advantage of these unlabeled data in classification learning. In this paper, we analyzed the role of unlabeled data in the context of naive Bayesian learning. Experimental results show that including unlabeled data as part of training data can significantly improve the performance of classification accuracy. The effect of using unlabeled data is especially important in case labeled data are sparse.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

A Score-Based bayesian network learning method by adopting Minimum Description Length principle (MDL Principle을 적용한 점수 기반 베이지안 네트워크 학습 방법)

  • Hwang, Sung-Chul;Lee, Yill-Byung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.412-415
    • /
    • 2006
  • 본 논문에서는 파라미터에 대한 정보가 없는 데이터, 즉, 각각의 이벤트 발생에 불확실성이 존재하는 데이터들에 대한 인과 관계의 학습을 위해 그래픽 모델인 베이지안 네트워크를 사용하였다. 이를 위해 기존에는 주로 네트워크 학습에 K2, Sparse Candidate 등의 방법이 사용되었다. 학습 및 추론에 있어서 어떻게 하면 기존의 방법보다 정확하고 빠르게 처리할 수 있을지에 대한 개선된 알고리즘을 제시하고 다른 알고리즘들과의 성능 비교를 통해 제시한 방법론이 보다 좋은 성능을 가짐을 보였다.

  • PDF

An Efficient Learning Method for Large Bayesian Networks using Clustering (클러스터링을 이용한 효율적인 대규모 베이지안 망 학습 방법)

  • Jung Sungwon;Lee Kwang H.;Lee Doheon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.700-702
    • /
    • 2005
  • 본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.

  • PDF