Noise originating from incipient propeller cavitation is assumed to come from a limited number of sources emitting a broadband signal. Conventional methods for cavitation localization have limitations because they cannot distinguish adjacent sound sources effectively due to low accuracy and resolution. On the other hand, sparse Bayesian learning technique demonstrates high-resolution restoration performance for sparse signals and offers greater resolution compared to conventional cavitation localization methods. In this paper, an incipient propeller cavitation localization method using sparse Bayesian learning is proposed and shown to be superior to the conventional method in terms of accuracy and resolution through experimental data from a model ship.
This paper investigates the use of the inverse-free sparse Bayesian learning (SBL) approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency-division multiplexing (OFDM)-based multiuser massive multiple-input multiple-output (MIMO) systems. The Bayesian inference method employs a truncated Gaussian mixture prior for the sought-after low-PAPR signal. To learn the prior signal, associated hyperparameters and underlying statistical parameters, we use the variational expectation-maximization (EM) iterative algorithm. The matrix inversion involved in the expectation step (E-step) is averted by invoking a relaxed evidence lower bound (relaxed-ELBO). The resulting inverse-free SBL algorithm has a much lower complexity than the standard SBL algorithm. Numerical experiments confirm the substantial improvement over existing methods in terms of PAPR reduction for different MIMO configurations.
Microarray data, obtained from DNA chip technologies, is the measurement of the expression level of thousands of genes in cells or tissues. It is used for gene function prediction or cancer diagnosis based on gene expression patterns. Among diverse methods for data analysis, the Bayesian network represents the relationships among data attributes in the form of a graph structure. This property enables us to discover various relations among genes and the characteristics of the tissue (e.g., the cancer type) through microarray data analysis. However, most of the present microarray data sets are so sparse that it is difficult to apply general analysis methods, including Bayesian networks, directly. In this paper, we harness an efficient structural learning algorithm and data dimensionality reduction in order to analyze microarray data using Bayesian networks. The proposed method was applied to the analysis of real microarray data, i.e., the NC160 data set. And its usefulness was evaluated based on the accuracy of the teamed Bayesian networks on representing the known biological facts.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.3
/
pp.89-95
/
2015
Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.
In many applications, an enormous amount of unlabeled data is available with little cost. Therefore, it is natural to ask whether we can take advantage of these unlabeled data in classification learning. In this paper, we analyzed the role of unlabeled data in the context of naive Bayesian learning. Experimental results show that including unlabeled data as part of training data can significantly improve the performance of classification accuracy. The effect of using unlabeled data is especially important in case labeled data are sparse.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.9
/
pp.765-774
/
2013
In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.
Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
Structural Engineering and Mechanics
/
v.68
no.6
/
pp.691-700
/
2018
Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.412-415
/
2006
본 논문에서는 파라미터에 대한 정보가 없는 데이터, 즉, 각각의 이벤트 발생에 불확실성이 존재하는 데이터들에 대한 인과 관계의 학습을 위해 그래픽 모델인 베이지안 네트워크를 사용하였다. 이를 위해 기존에는 주로 네트워크 학습에 K2, Sparse Candidate 등의 방법이 사용되었다. 학습 및 추론에 있어서 어떻게 하면 기존의 방법보다 정확하고 빠르게 처리할 수 있을지에 대한 개선된 알고리즘을 제시하고 다른 알고리즘들과의 성능 비교를 통해 제시한 방법론이 보다 좋은 성능을 가짐을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.700-702
/
2005
본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.