• Title/Summary/Keyword: Spark-ignition

Search Result 452, Processing Time 0.02 seconds

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine According to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2004
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine which has the ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Air-Fuel Ratio (공기연료비의 변화에 따른 제어자발화 가솔린기관의 배기 특성)

  • Kim, Hong-Wung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. Investigated are the engine emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to $180^{\circ}C$ in the inlet-air temperature. A controlled auto-ignition gasoline engine can be achieved the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

The Development of Lab-Scale Hybrid Rocket Ignition System (Lab-scale 하이브리드 로켓 점화장치 개발)

  • 유덕근;김진곤;길성만
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.122-125
    • /
    • 2003
  • For Lab-scale Hybrid Rocket's Ignition, It is needs of heat source to vaporize solid fuel. We used Nichrome wire which has a electric resistance for ignition. But Ignition system by using Nichrome wire is not only the disposable system, but also the system which has an affect on the Hybrid rocket's structures(nozzle throat diameter). The new Ignition system composed of Butane+propane gas' supply devices and spark plug. RPL(Rocket Propulsion Lab.) perform the hybrid rocket experiments over 50 times by using new ignition system. The fact that is possible to throttle the Thrust in hybrid rocket is confirmed.

  • PDF

A Study on the Minimnum Ignition Limit for LPG-Air Mixtures by Switching Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 점화한계에 관한 연구)

  • Jee, S.W.;Song, H.J.;Lee, C.H.;Park, W.Z.;Lee, K.S.;Lee, D.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1854-1856
    • /
    • 1996
  • This study describes the minimum ignition limit for LPG-Ai-r mixtures by switching sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltage is increased in proportional to the rate of increasing of frequency in LPG-Air mixed gas. Especially, increment between 10[kHz] and 30[kHz] is typical. It is considered that ignition is caused by one discharge until 10 [kHz] and, beyond 10[kHz] ignition is caused by more than two discharges. The reason is analysed that energy loss is caused by existing pause interval between discharges.

  • PDF

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine (제어자발화 가솔린기관의 배기 특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-10
    • /
    • 2009
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is cooled by the water of a specially designed coolant passage. The engine emission characteristics were investigated under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to $180^{\circ}C$ in the inlet air temperature. The ultra lean-burn can be achieved by the auto-ignition of gasoline fuel due to the heated inlet air in the compression ignition gasoline engine. It is confirmed that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide can be significantly reduced by CAI combustion compared with the combustion of a conventional spark ignition engine.

  • PDF

STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

  • PARK J. S.;KANG B. M.;KIM K. J.;LEE T. W.;YEOM J. K.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.555-561
    • /
    • 2005
  • This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.

A Study on the Spray and Combustion Characteristics of Direct-injection LPG (직접분사식 LPG의 분무 및 연소 특성에 관한 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2015
  • As advantages of LPG-DI engine, LPG is directly injected into combustion chamber during compression stroke to reduce compression temperature, prevent knock and spontaneous combustion, and adjust engine output using the amount of directly injected fuel, thereby reducing pumping loss caused by throttle valve. Stratified charge can be supplied nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In addition, it is characterized by free designing of intake manifold. Despite the fact that LPG-DI has many advantages as described above, there is lack of detailed investigation and study on spray characteristics, combustion flame characteristics, and ignition probability. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For supply of stratified charge in the combustion chamber, alignment of injector and spark plugs was made linear.

A Study on Spark Advance Control System using Microprocessor (마이크로프로세서를 이용한 엔진점화시기 제어장치)

  • Min, Y.B.;Lee, K.M.;Lee, S.K.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.80-84
    • /
    • 1989
  • In order to improve the combustion efficiency of the agricultural engine, an ignition timing control system was developed and tested. The control system was composed of the CDI ignition circuit, the microcomputer and the interfacing devices. In this study, the simplicity of the control system and the flexibility of the control strategy were emphasized for the precision, the applicability and the economical efficiency. The hardware was consisted in almost the same compositions as those of the automobile engine. The softwares of the control algorithms were developed to three types depending on the combination of the quasi-adaptive control and the open loop control which had the different spark advance equations according to the input variables such as engine speed, exhaust gas temperature and brake torque. The test results were summarized as follows: 1. By using the computer control system, the fuel consumption efficiency could be improved and the fuel consumption could be reduced by 0 to 57% compared to that of the fixed spark advance system. 2. The fuel consumption of the control mode with the quasi-adaptive algorithm was reduced by average 0.8% compared to that of the control mode without quasi-adaptive algorithm. 3. It was found that the control mode with the quasi-adaptive algorithm adopting single input of engine speed had most applicability and economical efficiency among three types of the control algorithms.

  • PDF