• Title/Summary/Keyword: Spark generation

Search Result 68, Processing Time 0.026 seconds

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

SPARK: A Smart Parametric Online RWA Algorithm

  • Palmieri, Francesco;Fiore, Ugo;Ricciardi, Sergio
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.368-376
    • /
    • 2007
  • The large potential bandwidth available in wavelength-division multiplexed optical networks makes this technology of crucial importance for satisfying the ever increasing capacity requirements of the next-generation Internet. In this scenario, the routing and wavelength assignment(RWA) problem that concerns determining the optical paths and wavelengths to be used for connection establishment in a wavelength-routed network, is still one of the most important open issues. In this paper we propose a new online dynamic grooming-capable RWA heuristic scheme working on wavelength division multiplexing(WDM) networks as a multistage selection process. The proposed algorithm is transparent with respect to the presence of wavelength converters, achieves very low connection rejection ratios with minimal computational complexity and is appropriate for the modern multilayer optical circuit and wavelength switched networks with sparse wavelength conversion capability.

Ionizing Characteristic of Glow Discharge by Controlled Air Flow Rate (공기유량에 따른 글로우 방전의 제전 특성)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.49-53
    • /
    • 2008
  • Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. And more, ionizer was developed recently using an atmospheric pressure glow discharge. On the other hand, ionizer needs a compressed or blown air to transport ion for charged objects. This air is very useful in explosive hazardous area to prevent the explosion of flammable gas and/or vapor by ignition sources, e.g. electrical spark. In this paper, we investigated the ionizing characteristic of atmospheric pressure glow discharge by controlled air flow rate from 5 liters to 60 liters a minute, and compared with decay time between the corona discharge and glow discharge as a function of some direction and distance from discharge ion source. We confirmed that an air flow rate needs 25 liters a minute to sustain the most suitable atmospheric pressure glow discharge and to increase an ionizing efficiency.

The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing (점화시기 근방의 고난류 생성을 위한 기초연구)

  • Hong, Jae-Ung;Song, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.

The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3) (나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성)

  • Yu, Susanna;Kang, Min-Seok;Kim, Do-Kyung;Moon, Kyung-Sook;Toprak, M.S.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.561-565
    • /
    • 2014
  • Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Performance and Emission Comparisons of a SI Engine Fueled by Syngas with Varying Hydrogen Content (합성가스 연료의 수소 함량 변화가 SI 엔진의 연소특성에 주는 영향)

  • Park, Seung-Hyun;Lee, Sun-Youp;Park, Cheol-Woong;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2011
  • As an effective utilization of biomass, organic wastes and coal, attention has been made to use syngas to a reciprocating engine to generate power. However, significant component variation of syngas depending upon origin and gasification conditions, and its lower heating value than that of LPG and CNG can create difficulties in stable engine operation. Thus it is necessary to address these issues in order to successfully develop power generation engines. As a primary step to resolve these problems, effects of H2 content variation in syngas on engine performance and emission characteristics were discussed in this study. The results show that as H2 % in syngas increases, more stable combustion was achieved with retarded MBT spark timing and engine efficiency becomes maximum with syngas of 10% H2. In addition, NOx emission increased while THC emission decreased as H2 % rises in the syngas.

An Optimization of 11kW Gas Engine for Distributed Energy Source Modified from Gasoline Engine (가솔린엔진을 개조한 분산전원용 11kW급 천연가스엔진의 성능 최적화)

  • Lee Youngae;Pyo Youngdug;Kim Gangchul;Oh Sidoek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-101
    • /
    • 2005
  • Cogeneration is an energy conversion process, where electricity and useful heat are produced simultaneously in one process. Also, carbon dioxide emissions can be reduced as well. The cogeneration process may be based on the use of steam, gas turbines or combustion engines. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 29.2$\%$ of thermal efficiency under Stoichiometric combustion and 33.6$\%$ of thermal efficiency under lean combustion. NOx emission shows less than 10ppm at 13$\%$ oxygen under stoichiometric combustion and about 100ppm at 13$\%$ oxygen under lean combustion.

Analysis of Impingement Lands to Help Diesel Combustion Chamber Using Spray Impaction (분무충돌을 이용하는 디젤연소실 설계를 위한 충돌면 분석)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.24-32
    • /
    • 1996
  • Most of the research of small engines to date focused on developing spark ignition engines occupied much parts. Recently the number of a small direct injection diesel engine applied in small cars has been increased and considered as a next generation power source for passenger cars because of its high efficiency. Therefore the combustion chamber becomes smaller and the fuel injection pressure goes higher, which makes fuel sprays impinged easily on the combustion chamber walls. When strong swirls are not induced, the fuel may not mix with air because of fuel deposition on the wall. As a positive way, the combustion chamber systems which is using spray wall impaction has been introduced and assessed by an experimental or a simulate manner. In these systems the raised lands are positioned in tile chamber for spray impaction in order to break up the fuel drops into much smaller and direct them into desirable direction. This study addresses to the effects of rho position and size of the raised land or glow plug to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then the chamber shapes are discussed with the characteristics and their proper position and size is proposed in any chamber volume.

  • PDF