• 제목/요약/키워드: Spark Ignition Engines

검색결과 114건 처리시간 0.022초

횡방향 유속 변화에 따른 고압 가솔린 팬형 인젝터의 분무특성 (Spray Characteristics of High Pressure Fan Spray Injector with Various Crossflow Speed)

  • 최재문;문석수;배충식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.38-44
    • /
    • 2005
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced from the injector of DIS(Direct Injection Spark Ignition) engine is of paramount importance in DISI engines. Fan-spray injector as well as swirl-spray injector was developed and utilized to the DISI engines. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engineer. The direct Mie scattered images presented the macroscopic view of the liquid spray fields interacted with crossflow. Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_{10}$ smaller. The experiments show the interaction of air flow field and the fuel spray field of fan-spray. The results can be utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성 (Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle)

  • 박경균;권상일;이우석;홍지형
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

UTV용 SI엔진에서 가솔린과 LPG 사용에 따른 배출가스 특성 연구 (A Study on the Characteristics of Exhaust Gas According to the Use of Gasoline and LPG in SI Engine for UTV)

  • 장진영;우영민;신영진;고아현;정용진;조종표;김강출;표영덕;한명훈
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.94-100
    • /
    • 2022
  • Even in non-road UTV (Utility Terrain Vehicle), spark ignition engines are often used to reduce emissions. In this study, gasoline and LPG (Liquified Petroleum Gas) fuels were applied to UTV engines, and the exhaust gas and combustion stability were compared through engine tests. A 0.8-liter two-cylinder SI engine was used in the experiment. Experiments were conducted while changing the IVO (Intake Valve Open) and EVC (Exhaust Valve Close) at 1500 rpm 14 N·m, 40 N·m, and 3000 rpm 17 N·m, 44 N·m conditions. As a result of the experiment, when the valve overlap increased according to the change of IVO and EVC, combustion stability decreased and THC emission increased, but NOx decreased. Comparing the LPG engine with the gasoline engine, the amount of CO2 and PN (Particulate Number) generation decreased in the LPG engine, and the combustion stability was good.

기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향 (The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines)

  • 권병철;김형섭
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

기솔린 기관에서 최적의 시동 및 공회전 속도제어를 위한 전자 제어장치 개발에 관한 연구 (A Study on the Development of an Electronic Control System for Optimal Start and Idle Speed Control in Gasoline Engines)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1148-1160
    • /
    • 2001
  • An electronic control system of the automobile engine for optimal start and idle speed control has been developed. This system employs the microcoputer-based electronic control unit and crank angle sensor for precise control on fuel injection, ignition timing, and idle speed more quickly and accurately at the start and idling. Consequently, the number of misfire can be reduced during been affected by air flow rate, idle quality(roughness), spark timing, fuel injection, water temperature, and load, Thus, this electronic control system strivers to reach the optimal idle operating point, defined the lowest idle speed(fuel economy) and idle quality(roughness), under any engine operating conditions.

  • PDF

Robust Nonlinear Control of Air-to-Fuel Ratio in Spark Ignition Engines

  • Myoungho Sunwoo;Paljoo Yoon;Park, Seungbum;Lee, Wootaik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.699-708
    • /
    • 2001
  • This paper presents a new approach to the AFR (Air-to-Fuel Ratio) control problem, which is based on the wide-band oxygen sensor output. The dedicated nonlinear controller is based on the feedback lineaization technique. It is well known that the feedback linearizing control technique requires an exact model of the plant for the cancellation of plant nonlinearities. A sliding mode control scheme is applied which can effectively compensate the modeling uncertainties. The measurement time delay of an oxygen sensor limits the gain of the feedback controller. Hence, time delay compensation procedure is necessary for the improvement of control performance. The Smith predictor is adopted to compensate the effects of time delay. The simulation and experimental results show that the proposed controllers can effectively reduce the transient peaks of AFR in spite of fast tip-in and tip-out maneuvers of the throttle.

  • PDF

4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구 (A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine)

  • 김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

가솔린 기관의 시동조건에 따른 HC의 배출특성 (Characteristics of HC Emissions by Starting Conditions in an SI Engine)

  • 김성수
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

4기통 4사이클 터보과급 가솔린 기관의 성능 및 배리조성 예측에 관한 연구(제2보) (Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine(Second Paper))

  • 유병철;이병해;윤건식
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.46-59
    • /
    • 1990
  • The development of the effective computer simulation program which predicts the performances and emissions of the multi-cylinder turbocharged gasoline engine has been described in the first paper. In this paper, the comparison between the predictions and experiments of the transient pressure at each point in the intake and exhaust systems was made to examine the validity and availability of the simulation models adopted. This test was performed for the engines equipped with different turbochargers under various operating conditions. The results of calculation showed good agreements with the experimental data and proved that the simulation program developed can be used for the matching of the turbocharger to the engine.

  • PDF

스파크 점화기관의 난류 화염전파모델에 관한 연구 (A Study on Turbulent Flame Propagation Model of S. I. Engines)

  • 유욱재;최인용;전광민
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2787-2796
    • /
    • 1994
  • The modeling of combustion process is an important part in an engine simulation program. In this study, calculated results using a conventional B-K model and the other model which is called GESIM were compared with experimentally measured data of a three-cylinder spark-ignition engine under wide range of operating conditions. The burn rates calculated from the combustion models were compared with the burn rate calculated from the one-zone heat release analysis that uses measured pressure data as an input data. As a result of the two models' comparison, the GESIM combustion model conformed to be closer to the data acquired from the experiment in wide operating ranges. The GESIM model has been improved by introducing a variable that considers the flame size, the area of flame conacting the piston surface into the model, based on the comparison between the experimental result and the calculated results. The improved combustion model predicts experimental results more precisely than that of GESIM combustion model.