• Title/Summary/Keyword: Spark Ignition Engines

Search Result 114, Processing Time 0.025 seconds

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines (First Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구 (제1보))

  • 윤건식;우석근;서문진;신승한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1260-1271
    • /
    • 2001
  • The simulation program which predicts the gas behavior in a spark ignition engine has been developed and verified by the comparison with the experimental results foy the MPI engine, naturally aspirated and turbochared engines with a carburettor. First paper describes the calculations of the behavior of gas in the intake and exhaust system. The generalized method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyse the pipe flow The constant-Pressure model was applied for the analysis of the flow through engine valved, and the constant-pressure perfect-mixing model was applied for the flow at manifold junction. The concept of the sudden area change was used for the muffler and catalytic convertor. Fer the plenum chamber in an MPI engine, constant-pressure model and constant-volume model were both examined. Through the comparison of predicted results with experiments, the simulation program was verified by showing good prediction of the behavior of IC engine qualitatively and quantitatively under wide range of operating conditions.

  • PDF

2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine (가솔린엔진에서의 2차원 화염 가시화)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

Characteristics of Exhaust Gas Temperature and Harmful Emission During Cold Start Transient Operation in an SI Engine (가솔린엔진의 냉시동 천이구간에서 배출가스 온도 및 유해배출물 특성에 관한 연구)

  • Cho, Yong-Seok;Jeong, Dae-Chul;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1181-1187
    • /
    • 2006
  • Stringent regulations of exhaust emission from vehicles become a major issue in automotive industries. In SI engines, it is one of the crucial factor to reduce exhaust emissions during cold start in order to meet stringent regulations such as SULEV or EURO-4, because SI engines emit a large portion of total harmful exhaust compounds when they are cold. At early stages of cold start in gasoline engines, exhaust gas temperature plays a key role to improve three way catalyst by virtue of fast warmup. Therefore, this study focused on the increase of exhaust gas temperature under controls of engine operating parameters such as spark ignition timing, valve overlap by virtue of intake VVT and catalyst heating function. Furthermore, effects on harmful emission due to these parameters are also investigated. Experiments showed that retarded spark ignition timings and increased valve overlap may be helpful to increase exhaust gas temperature. It was also found that $NO_x$ was decreased with increased valve overlap. This study also showed that sudden changes in ISA and amount of fuel due to the deactivation of catalyst heating function cause temporal increase of harmful emissions.

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Cycle-to-Cycle Variations Under Cylinder- Pressure- Based Combustion Analysis in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1151-1158
    • /
    • 2000
  • Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. The burn rate analysis program was used here and the burn parameters were used to determine the variations in the input parameter-i. e., fuel, air, and residual mass. In this study, we investigated the relationship of indicated mean effective pressure (IMEP), coefficient of variation (COV) of IMEP, burn angles, and lowest normalized value (LNV) in a spark ignition engine in a view of cyclic variations.

  • PDF

A Study on the Emissions of Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관의 배출가스특성에 관한 연구)

  • Han, Sung-Bin;Choi, Gyeung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE OPERATION WITH EXHAUST GAS RECIRCULATION

  • Choi, G.H.;Han, S.B.;Dibble, R.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. The objective of this research is to determine the effects of Exhaust Gas Recirculation (EGR) rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines (점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF

Individual Cylinder Spark Advance Control Using Cylinder Pressure in SI Engines

  • Park, Seungbum;Myoungho Sunwoo;Paljoo Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.160.2-160
    • /
    • 2001
  • This paper presents an individual cylinder spark advance control strategy based upon the location of peak pressure (LPP) in spark ignition engines using artificial neural networks. The LPP is estimated using a feedforward multi-layer perceptron network (MLPN), which needs only five samples of output voltage from the cylinder pressure sensor. The cyclic variation of LPP restricts the gain of the feedback controller, and results in poor regulation performance during the transient operation of the engine. The transient performance of the spark advance controller is improved by adding a feedforward controller which reflects the abrupt changes of the engine operating conditions such as engine speed and manifold absolute pressure (MAP)...

  • PDF