• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.02 seconds

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

Performance Analysis and Emission Characteristics of a Bi-fuel Using Spark Ignition Engine

  • Mahmud, Md. Iqbal;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Bi-fuel system in a spark ignition engine (SIE) is a rising phenomena in today's automobile technology. In a gasoline driven vehicle, alternatively adoption of compressed natural gas (CNG) could be used as a potential substitute to meet the energy requirement and this is possible by some minor changes in the hardware of the existing engine. Gasoline engine is widely used in the passenger cars, light, medium and heavy duty vehicles but the consumption status of the petroleum is decreasing worldwide and at the same time environmental pollution from automobiles is seriously establishes as a threat for every nation in respect to global warming and climate changes. Now-a-days most vehicles operate using CNG for its popularity stems, clean burning properties and cost effective solution compared to other alternative fuels. It refers as a good gaseous fuel because of its high octane number and self ignition temperature. Though the power output is slightly lesser than the gasoline fuel; its thermal efficiency is better than the gasoline for the same SIE. The research paper highlights the reduction of CO, reasonable outcomes of HC emissions with minor increase in $NO_x$ emissions compared with the gasoline fuel to bi-fuel mode in the SIE that meets the emission challenges.

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

Measurements of Mixture Strength Using Spark Plug (스파크 플러그를 이용한 혼합기 농도 측정)

  • 조상현;임명택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

Theoretical Prediction Method on Occurrence of Spark Knock (스파크노크 발생에 대한 이론적 예측방법)

  • 이내현;오영일;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines (점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF

A Study on Characteristics of Spray and Combustion of LPG and CNG about the Effect of Impingement-wall under Direct Injection Condition (직접분사 조건에서 충돌벽면이 미치는 영향에 대한 LPG와 CNG의 분무 및 연소 특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Kim, Sung-Hee
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.56-68
    • /
    • 2015
  • Liquefied petroleum gas and compressed natural gas haven been regarded as promising alternative fuels because of no smoke, and they are also clean fuel for spark-ignited engine. In spark-ignited direct-injection engine, direct injection technology can increase engine volumetric efficiency significantly and also reduce necessity of throttle valve. This study designed combustion chamber equipped with visualization system. To improve ignition probability, the study designed to help three types of impingement-walls to form mixture. In doing so, LPG CNG-air mixture could be easily formed after spray-wall impingement and ignition probability increased too. The results of this study could contribute as basic resources of spark-ignited direct injection LPG and CNG engine design and optimization extensively.

A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG (충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.