• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.02 seconds

Characteristics of Combustion by Varying Different Coolant-temperature in a Hydrogen Engine for HALE UAV (고고도 무인기용 수소연료엔진의 냉각수 온도변화에 따른 연소 특성)

  • Yi, Ui-Hyung;Jang, Hyeong-Jun;Park, Cheol-Woong;Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • Using hydrogen fuel is expected to be suitable as a reciprocating internal combustion engine with heightened interest in HALE(High Altitude Long Endurance) UAV(Unmanned Aerial Vehicle). Hydrogen is hightest energy density per mass so it can continue to charge for long periods of time and have positive part of the environmental effects. However, it is estimated that there is less research on hydrogen fuel engine currently applied, and many studies need to be done. Depending on the operation, there are factors that result in supercooling due to reduced radiation or reduce cooling performance due to low air density. Therefore, the experiment was to change the temperature of the cooling water and investigate the effect on engine combustions. The limitation of the stable operation range due to backfire is dominated by the excess air ratio rather than the effect of the cooling water temperature change. When the cooling water temperature increases, the volumetric efficiency decreases and the torque decreases. As the cooling water temperature decreases, the heat loss was increased and consequently the thermal efficiency was decreased.

Experimental Study of Emission Characteristics for CNG Passenger Car (CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구)

  • Kim, Hyun-jun;Lee, Ho-kil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, most of the energy consumed in vehicle is derived from fossil fuels. For this reason, the demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Natural gas represents today a promising alternative to conventional fuels for vehicles propulsion, because it is characterized by a relatively low cost, better geopolitical distribution than oil, lower environmental impact, higher octane number and a higher self ignition temperature. Above all, CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. In this study was installed bi-fuel system that a conventional 2 liters gasoline engine was modified to run on natural gas by a gas injection system. Experiments were mainly carried on the optimization of an ECU control strategy affecting the emission characteristics of CNG/Gasoline bi-fule vehicle. The test results shown that CO2 emission in bi-fuel mode was reduced 16% compared to gasoline fuel in the NEDC mode. Also the amount of CO and HC emissions in bi-fuel and gasoline modes were found to equality. But Compared to gasoline, the bi-fuel mode resulted in higher NOx emissions.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

Basic Study on Spray Behavior for Application of Biofuel to Diesel Engines (Palm Oil-Considering Viscosity) (바이오연료의 엔진 적용을 위한 분무거동 기초연구(팜유-점성고려))

  • Yeom, Jeong-Kuk;Ha, Hyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • Diesel engines are most suitable for biodiesel fuel because diesel fuel has a higher cetane number compared to gasoline and diesel engines have no spark ignition system; hence, engine conversion is easy and cost effective. For these reasons, in this study, the spray behavior characteristics of vegetable palm oil were analyzed by using a common-rail injection system of a commercial diesel engine, and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel fuel (BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures-500 bar, 1000 bar, 1500 bar, and 1600 bar-by setting the injection duration at $500{\mu}s$. We determined there is no significant difference in the macro characteristics of the spray behavior (spray penetration and spray angle) in response to any change in the blend ratio of palm oil and diesel fuel at a fixed injection pressure. In particular, all experiments showed a spray angle of approximately $15^{\circ}$.

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.