• 제목/요약/키워드: Spark Ignition Engine

검색결과 358건 처리시간 0.019초

LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향 (Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화 (The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine)

  • 문석수;;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.

무인기용 터보차저 장착 SI 엔진 시스템 성능해석 (Performance Analysis of a Turbocharged SI Engine System for UAV)

  • 임병준;강영석;강승우
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.43-49
    • /
    • 2016
  • A performance analysis of a gasoline engine with a 2-stage turbocharger system for unmanned aerial vehicle(UAV) was conducted. One dimensional system analysis was conducted for the requirements of turbochargers and adequate turbochargers were selected from commercially available models for automobiles. Modeling and simulation were performed by Ricardo WAVE. Gasoline engine modeling was based on a 2.4 L 4-cylinder engine specification. The selected turbochargers and intercoolers were added to the engine model and simulated at 40,000 ft altitude condition. The results of the engine model and 2-stage turbocharger system model simulation showed break power 93 kW which is appropriate power required for the engine operation at the ambient conditions of 40,000 ft altitude.

장기체공 소형 UAV용 엔진 성능시험 및 시뮬레이션 (Test and Simulation of An Engine for Long Endurance Miniature UAVs)

  • 신영기;장성호;구삼옥
    • 한국항공우주학회지
    • /
    • 제33권5호
    • /
    • pp.99-105
    • /
    • 2005
  • 장기체공 소형 무인기 실용화를 위해서는 연료소비율이 우수한 엔진 개발이 매우 중요하다. 본 연구에서는 4행정 글로우 플러그 엔진을 가솔린 엔진으로 개조하였다. 고공에서의 엔진 성능예측에 필요한 시뮬레이션 프로그램 개발을 위하여 지상에서 엔진 성능을 측정하였다. 측정결과 고속에서 윤활부족으로 인하여 엔진 마찰력이 급격히 증가함을 알 수 있었다. 지상 시험결과를 토대로 개발된 엔진성능 예측 프로그램에 의하면 고도가 상승할수록 연료소비율이 악화되는데 이는 윤활부족에 의한 마찰력 손실은 고도에 관계없이 거의 일정하기 때문이다.

고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션 (Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV)

  • 강승우;배충식;임병준
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.101-107
    • /
    • 2019
  • 고고도 장기체공 무인기의 추진 시스템에 다단 터보차저 가솔린 왕복기관 시스템의 적합성을 평가하기 위하여 성능 시뮬레이션을 진행하였다. Ricardo사의 1-D 엔진 시뮬레이션 WAVE를 사용하여 다단 터보차저를 포함한 엔진 시스템을 모델링하였다. 엔진 모델은 양산 2.4L 가솔린 4기통 엔진의 제원을 반영하였다. 터보차저 모델에는 상용 터보차저의 성능 맵을 적용하였다. 고도 60,000ft에서 엔진의 적정 흡기 압력을 확보하기 위해 3단 터보차저 및 인터쿨러를 구성하였다. 웨이스트 게이트는 하나로 구성하였다. 이를 통해 지상부터 고고도까지의 엔진 시스템 정상 상태 운전성을 평가하였다.

4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구 (A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine)

  • 김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

전기점화기관에서 연소의 사이클 변화 측정 및 해석 (Measurement and analysis of the cyclic combustion variability in as SI engine)

  • 이종화;김응서
    • 오토저널
    • /
    • 제14권3호
    • /
    • pp.90-101
    • /
    • 1992
  • An experimental study was carried out to investigate the characteristics of cyclic variability of combustion in a single cylinder spark ignition engine. Cylinder pressure of 240 consecutive cycles were measured for various engine operating conditions. From these data, a thermody-n amic analysis was performed for the typical cases in order to identify the cause and effect re -lation of the cyclic variation. In determining the number of cycles required for estimating the coefficient of variation of IMEP and so on, the oprating conditions must be cosidered to fit the objective of the analysis. It is thought that the variation in early flame stage is amplified through the flame propagation and results in the phase change between pressure and volume, which can be the major reason of cyclic variation of IMEP in case of lean operation.

  • PDF

PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구 (Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence)

  • 정경석
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.

가솔린엔진용 E-EGR 밸브 특성에 관한 연구 (A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine)

  • 박철웅;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

4기통 4사이클 터보과급 가솔린 기관의 성능 및 배리조성 예측에 관한 연구(제2보) (Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine(Second Paper))

  • 유병철;이병해;윤건식
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.46-59
    • /
    • 1990
  • The development of the effective computer simulation program which predicts the performances and emissions of the multi-cylinder turbocharged gasoline engine has been described in the first paper. In this paper, the comparison between the predictions and experiments of the transient pressure at each point in the intake and exhaust systems was made to examine the validity and availability of the simulation models adopted. This test was performed for the engines equipped with different turbochargers under various operating conditions. The results of calculation showed good agreements with the experimental data and proved that the simulation program developed can be used for the matching of the turbocharger to the engine.

  • PDF