• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.02 seconds

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.

The performance and emissions of methanol-LPG fueled spark ignition engine (Methanol-LPG연료 전기점화기관의 성능 및 배출물농도)

  • 김응서;조경국
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.64-79
    • /
    • 1985
  • Engine performances and emission characteristics were investigated, using a experimental single cylinder engine with methanol-LPG(butane) fuel blend. The results were compared with the case of neat methanol and gasoline. The blending ratio of methanol to LPG was reasonable at 90 : 10(M90) and in using M90, the engine performances including output, brake specific fuel consumption and brake thermal efficiency, were better than those of neat methanol and gasoline. CO emission of M90 was lower than that of meat methanol by 15% and lower than that of gasoline by 35%. HC emission of M90 was also lower than that of gasoline by 46-85% in the whole range of .phi. The concentration of NOx emission of M90 was lower than that of gasoline and higher than that of neat methanol.

  • PDF

A Study on Evaporative Emissions in a Spark Ignition Engine with a Carbon Canister

  • Park, Gyeung-Ho;Cho, Gyu-Sang
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • Evaporative emissions from gasoline powered vehicles continue to be a major concern. The performance of carbon canister in evaporative emission control systems has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. In this study, the effects of evaporative emissions on the engine performance were investigated. The experimental results show the effectiveness of this system for future exhaust emissions and enhanced evaporative emissions. This paper discusses the evaluation on the relationship between carbon canister condition and engine performance while engine is running.

Characteristics of HC Emissions by Starting Conditions in an SI Engine (가솔린 기관의 시동조건에 따른 HC의 배출특성)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

Reducing Exhaust Hydrocarbon at Gasoline Engine with Catalytic Converter using Synchronized Secondary Air Injection (촉매가 장착된 가솔린엔진에서 동기화된 2차공기분사에 의한 배기 탄화수소 저감)

  • 심현성;민경덕;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • A synchronized secondaty air injection method has been developed to hydrocarbon emission by injecting secondary air intermittently into exhaust port. The method has been tested in a single cylinder spark-ignition engine operating at cold-steady / cold-start conditions. Effects of air injection timing, intake pressure and engine air-fuel ratio have been investigated at cold-steady condition. Also, hydrocarbon emission and exhaust gas temperature with catalytic conberter are compared with a continuous SAI method and base condition at cold-start condition. Resules show that hydrocarbon reduction rate and exhaust gas temperature are sensitive to the timing of synchronized SAI. At cold-steady condition, HC emission is minimum at engine air-fuel ratio of 10. At cold-start condition, the accumulated hydrocarbon emission during the first 120 s decreases about 56% and 22% with the synchronized and continuous SAI, respectively, compared to that of base condition.

  • PDF

Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance (4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향)

  • 김물시;진성호;박경석;이용길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.