• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.022 seconds

Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션)

  • 윤건식;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF

Effects of Perforated Throttle Valve on the Mixture Flow and Secondary Atomization of Fuel Spray (다공스로틀밸브가 혼합기 유동과 연료 분무의 2차 미립화에 미치는 영향)

  • Cho, B.O.;Cho, H.M.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.60-66
    • /
    • 1996
  • Finely atomized fuel droplet and good mixed mixture plays very important in improving combustion efficiency in an spark ignition engine. And combustion efficiency has influence directly on the engine power, fuel consumption rate and pollutant emission. In this study, perforated throttle valve which has relatively low value of PR has been developed and studied for the purpose of improving those aims. As a result of this study, it has been verified that the perforated throttle valve makes droplet more finely, and also proved that has a function of contributing to form good mixed mixture, especially in mixture preparation system of carburetor or SPI type spark ignition engine.

  • PDF

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

The prediction of emission concentrations in spark ignition engine using methanol as a fuel (Methanol을 연료로 한 전기점화 기관의 배출물 농도예측에 관한 연구)

  • 김응서;김상호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.79-88
    • /
    • 1983
  • A prediction of emission concentrations was made by calculating chemical equilibrium on the basis of an indicated pressure diagram in spark ignition engine using methanol as a fuel. A prediction according to Otto cycle was also made and for carbon dioxide, carbon monoxide and nitric oxide, emission test was performed using a conventional SI engine that was modified a little considering fuel characteristics. An investigation was made for those three cases-results from an indicated pressure diagram, Otto cycle and emission test. A good agreement between the measured values and the predicted ones existed for carbon dioxide and carbon monoxide, but not for nitric oxide. And good results existed for the other emission concentrations.

  • PDF

A Study on the Refinement of Turbulent Flame Propagation Model for a Spark-Ignition Engine (스파크 점화기관의 난류화염전파 모델의 개선에 관한 연구)

  • 최인용;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2030-2038
    • /
    • 1995
  • In this study, three turbulent flame propagation models are compared using experimentally measured data of a 4 valves/cylinder spark-ignition engine. First two conventional models are B.K model and GESIM combustion model. The burning rates calculated from the two models are compared with the burning rates calculated from measured pressure data using the one-zone heat release analysis. GESIM combustion model predicts burning rates closer to the data acquired from the experiment in wide operating ranges than B-K model does. The third model is refined based on GESIM combustion model by including the effect of flame stretch, turbulent length scale band pass filter and a variable that considers flame size and the area of flame contacting the cylinder wall surface. The refined combustion model predicts burning rates closer to experimental results than GESIM combustion model does. Also, the refined combustion model predicts flame radius close to the experimental result measured by using optical fiber technique.

Experimental study on the heat flux and heat transfer coefficient in a spark ignition engine (스파크 점화기관의 열유속 및 열전달 계수에 대한 실험적 연구)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1466-1474
    • /
    • 1997
  • In order to design and develop a spark ignition engine, many studies must be preceded about the characteristics of thermal flow. For measurement of transient wall temperature thin film thermocouples of Bendersky type were manufactured and these probes were fixed into the wall of combustion chamber. Surface wall temperatures were measured in experiments of various engine speeds. Transient heat fluxes were calculated from the wall temperature measurements. Pressure was measured from combustion chamber using pressure transducer and gas temperatures were calculated using the state equation of ideal gas. And instantaneous heat transfer coefficients were obtained. It will be the basic data for the formulae of instantaneous heat transfer coefficients.

Modeling of Hydrocarbon Emissions from Spark Ignition Engines (스파크 점화기관의 탄화수소 배출 모델링)

  • 고용서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.58-71
    • /
    • 1996
  • A model which calculates the hydrocarbon emissions from spark ignition engines is presented The model contains the formation of HC emissions due to both crevices around piston ring top land and oil films on the cylinder wall. The model also considers in-cylinder oxidation and exhaust port oxidation of desorbed HC from crevices and oil films after combustion process. The HC emissions model utilizes the results of SI engine cycle simulation. The model predicts well the trends of HC emissions from the engines when varying engine parameters.

  • PDF

Change in flame velocity and combustion with inlet air humidity on the spark ignition engine (스파아크 점화기관의 흡기습도에 대한 화염속도 및 연소의 변화)

  • 김문헌;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.41-46
    • /
    • 1983
  • The influence of inlet air humidity on the flame velocity and combustion of the spark ignition engine were described experimentally by means of the flame velocity measuring apparatus using ion-current. The flame velocity are greatly influenced air fuel ratio and engine speed, and linealy decrease according to the increasing of inlet air humidity. The flame travell curve is very similar to the rate of mass burned and combustion progressive is estimated mostly by only the rate of mass burned curve. The decreasing of the mean flame velocity is about 0.4m/s for increasing of 0.001 specific humidity and we think the reason is mainly decreasing of thermal conductivity.

  • PDF

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.