• Title/Summary/Keyword: Span Matrix

Search Result 97, Processing Time 0.022 seconds

Machine Reading Comprehension System for Multiple Span Extraction using Span Matrix (Span Matrix를 이용한 다중 범위 추출 기계독해 시스템)

  • Jang, Youngjin;Lee, Hyeon-gu;Shin, Dongwook;Park, Chan-hoon;Kang, Inho;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.31-35
    • /
    • 2021
  • 기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 기존의 기계독해는 대부분 문서에 존재하는 짧고 간결한 답변 추출 문제를 풀고자 했으며 최근엔 불연속적인 범위를 추출하는 등의 확장된 문제를 다루는 데이터가 공개되었다. 불연속적인 답변 추출은 실제 애플리케이션에서 사용자에게 정보를 유연하게 제공해줄 수 있다. 따라서 본 논문에서는 기존의 간결한 단일 범위 추출에서 확장된 다중 범위 추출 시스템을 제안하고자 한다. 제안 모델은 문서를 구성하는 모든 토큰의 조합으로 구성된 Span Matrix를 통하여 다중 범위 추출 문제를 해결하고자 하며 실험을 통해 기존 연구들과 비교하여 가장 높은 86.8%의 성능을 보였다.

  • PDF

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.351-367
    • /
    • 2005
  • Multi-span beams carrying multiple point masses are widely used in engineering applications, but the literature for free vibration analysis of such structural systems is much less than that of single-span beams. The complexity of analytical expressions should be one of the main reasons for the last phenomenon. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-span uniform beam carrying multiple point masses. First, the coefficient matrices for an intermediate pinned support, an intermediate point mass, left-end support and right-end support of a uniform beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the related eigenfunctions respectively. The effects of in-span pinned supports and point masses on the free vibration characteristics of the beam are also studied.

Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads (여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석)

  • Hong, Seong-Uk;Kim, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks (이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구)

  • 윤한익;손인수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.

Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses (크랙과 이동질량을 가진 티모센코 보의 진동특성)

  • 안성진;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 손인수;안성진;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.