• 제목/요약/키워드: Spallation target

검색결과 17건 처리시간 0.029초

A Preliminary Design Concept of the HYPER System

  • Park, Won S.;Tae Y. Song;Lee, Byoung O.;Park, Chang K.
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.42-59
    • /
    • 2002
  • In order to transmute long-lived radioactive nuclides such as transuranics(TRU), Tc-99, and I- l29 in LWR spent fuel, a preliminary conceptual design study has been performed for the accelerator driven subcritical reactor system, called HYPER(Hybrid Power Extraction Reactor) The core has a hybrid neutron energy spectrum: fast and thermal neutrons for the transmutation of TRU and fission products, respectively. TRU is loaded into the HYPER core as a TRU-Zr metal form because a metal type fuel has very good compatibility with the pyre- chemical process which retains the self-protection of transuranics at all times. On the other hand, Tc-99 and I-129 are loaded as pure technetium metal and sodium iodide, respectively. Pb-Bi is chosen as a primary coolant because Pb-Bi can be a good spallation target and produce a very hard neutron energy spectrum. As a result, the HYPER system does not have any independent spallation target system. 9Cr-2WVTa is used as a window material because an advanced ferritic/martensitic steel is known to have a good performance under a highly corrosive and radiation environment. The support ratios of the HYPER system are about 4∼5 for TRU, Tc-99, and I-129. Therefore, a radiologically clean nuclear power, i.e. zero net production of TRU, Tc-99 and I-129 can be achieved by combining 4 ∼5 LWRs with one HYPER system. In addition, the HYPER system, having good proliferation resistance and high nuclear waste transmutation capability, is believed to provide a breakthrough to the spent fuel problems the nuclear industry is faced with.

Remote handling systems for the ISAC and ARIEL high-power fission and spallation ISOL target facilities at TRIUMF

  • Minor, Grant;Kapalka, Jason;Fisher, Chad;Paley, William;Chen, Kevin;Kinakin, Maxim;Earle, Isaac;Moss, Bevan;Bricault, Pierre;Gottberg, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1378-1389
    • /
    • 2021
  • TRIUMF, Canada's particle accelerator centre, is constructing a new high-power ISOL (Isotope Separation On-Line) facility called ARIEL (Advanced Rare IsotopE Laboratory). Thick porous targets will be bombarded with up to 48 kW of 480 MeV protons from TRIUMF's cyclotron, or up to 100 kW of 30 MeV electrons from a new e-linac, to produce short-lived radioisotopes for a variety of applications, including nuclear astrophysics, fundamental nuclear structure and nuclear medicine. For efficient release of radioisotopes, the targets are heated to temperatures approaching 2000 ℃, and are exposed to GSv/h level radiation fields resulting from intended fissions and spallations. Due to these conditions, the operational life for each target is only about five weeks, calling for frequent remote target exchanges to limit downtime. A few days after irradiation, the targets have a residual radiation field producing a dose rate on the order of 10 Sv/h at 1 m, requiring several years of decay prior to shipment to a national disposal facility. TRIUMF is installing new remote handling infrastructure dedicated to ARIEL, including hot cells and a remote handling crane. The system design applies learnings from multiple existing facilities, including CERN-ISOLDE, GANIL-SPIRAL II as well as TRIUMF's ISAC (Isotope Separator and ACcelerator).

Preliminary Corrosion Model in Isothermal Pb and LBE Flow Loops

  • Lee, Sung Ho;Cho, Choon Ho;Song, Tae Yung
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.201-205
    • /
    • 2006
  • HYPER(Hybrid Power Extraction Reactor) is the accelerator driven subcritical transmutation system developed by KAERI(Korea Atomic Research Institute). HYPER is designed to transmute long-lived transuranic actinides and fission products such as Tc-99 and I-129. Liquid lead-bismuth eutectic (LBE). Has been a primary candidate for coolant and spallation neutron target due to its appropriate thermal-physical and chemical properties, However, it is very corrosive to the common steels used in nuclear installations at high temperature. This corrosion problem is one of the main factors considered to set the upper limits of temperature and velocity of HYPER system. In this study, a parametric study for a corrosion model was performed. And a preliminary corrosion model was also developed to predict the corrosion rate in isothermal Pb and LBE flow loops.

Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

  • Ebrahimkhani, Marziye;Hassanzadeh, Mostafa;Feghhi, Sayed Amier Hossian;Masti, Darush
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.55-63
    • /
    • 2016
  • Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy ($E_e$) and source multiplication coefficient ($k_s$), has been investigated. A Monte Carlo code (MCNPX_2.6) has been used to calculate neutronic parameters such as effective multiplication coefficient ($k_{eff}$), net neutron multiplication (M), neutron yield ($Y_{n/e}$), energy constant gain ($G_0$), energy gain (G), importance of neutron source (${\varphi}^*$), axial and radial distributions of neutron flux, and power peaking factor ($P_{max}/P_{ave}$) in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current ($I_e$) have been decreased in the highest case of $k_s$, but G and ${\varphi}^*$ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing $E_e$ from 100 MeV up to 1 GeV, $Y_{n/e}$ and G improved by 91.09% and 10.21%, and $I_e$ and $P_{acc}$ decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np-Pu assemblies on the periphery allows for a consistent $k_{eff}$ because the Np-Pu assemblies experience less burn-up.

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai;Ma, Wenjing;Cui, Wenjuan;He, Zhiyong;Li, Xinxin;Dang, Shiwu;Yang, Feng;Guo, Yuhui;Duan, Limin;Li, Meng;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1253-1260
    • /
    • 2022
  • This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권1호
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.