• Title/Summary/Keyword: Spacings

Search Result 358, Processing Time 0.023 seconds

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (V) (미세균열의 간격 분포를 이용한 결의 평가(V))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The comprehensive evaluation for rock cleavages was performed through the combination of the 16 parameters derived from the enlarged photomicrographs of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the above parameters can be classified into group I (spacing frequency (N), total spacing ($1m{\geq}$), constant (a), exponent (${\lambda}$), slope of exponential straight line (${\theta}$), length of line (oa') and trigonometric ratios ($sin{\theta}$, $tan{\theta}$) and group II (mean spacing (Sm), difference value between mean spacing and median spacing (Sm-Sme), density (${\rho}$), lengths of lines (oa and aa'), area of a right-angled triangle (${\Delta}oaa^{\prime}$) and trigonometric ratio($cos{\theta}$). The values of the 8 parameters belonging to group I show an order of H(hardway, H1+H2)

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (IV) (미세균열의 간격 분포를 이용한 결의 평가(IV))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.127-141
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The multicriteria evaluation for the six directions of rock cleavages was performed using the microcrack spacing-related parameters derived from the enlarged photomicrographs (${\times}6.7$) of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the analysis for deriving the main parameter indicating the order of arrangement among six diagrams was performed. The values of five parameters with respect to six directions of the rock cleavages were arranged in increasing or decreasing order for the above analysis. The decreasing order of the values of main parameter(mean spacing-median spacing, $S_{mean}-S_{median}$) and mean spacing are consistent with the order of H1, H2, G1, G2, R1 and R2 directions. These sequential arrangements of six directions of the rock cleavages can provide a basis for those of the six diagrams related to spacing. Second, the nine correlation charts between the above main parameter and various parameters were arranged in decreasing order of correlation coefficient ($R^2$). These related charts shows a high correlation of power-law function in common. The values of mean spacing, density (${\rho}$) and length of line oa are directly proportional to the value of main parameter, while the values of constant (a), exponent (${\lambda}$), spacing frequency (N), length of line oa', slope of exponential straight line (${\theta}$) and total length ($1mm{\geq}$) are inverse proportional. Third, the results of correlation analysis between the values of parameters for three planes and those for three rock cleavages are as follows. The values of frequency, total spacing, constant, exponent, slope and length of line oa' for three planes and three rock cleavages show an order of R' < G' < H' and H < G < R, respectively. On the other hand, the values of mean spacing, (mean spacing-median spacing), density and length of line oa show an order of H' < G' < R' and R < G < H, respectively. The correlation of the mutually reverse order of the values of parameters between three planes and three rock cleavages can be drawn. This type of correlation analysis is useful for discriminating three quarrying planes.

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

Comparative Study of Seed and Straw Productivity of Italian Ryegrass(Lolium multiflorum Lam.) 'GreenCall' according to Inter-Row Spacing in the Southern Region (남부 지역에서 파종간격에 따른 이탈리안 라이그라스(Lolium multiflorum Lam.) '그린콜' 품종의 종자 및 짚 생산성 비교)

  • Li, Yan Fen;Wang, Li Li;Yu, Young Sang;Jeong, Eun Chan;Ahmadi, Farhad;Li, Sang Hoon;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • This experiment was conducted to investigate the change in the productivity of Italian ryegrass seeds according to the inter-row spacing in the southern region of the Korean Peninsula. Italian ryegrass (Lolium multiflorum Lam.) 'Green Call' variety was sown in Jinju, Gyeongnam in the fall of 2020 with three inter-row spacings (20, 30 and 40 cm). The experiment was arranged a randomized block design with three replications. The ryegrass was sown on October 17, 2020, and the harvest was on May 31, about 60 days from the first heading stage. There was no difference among treatments with an average of April 27th in heading stage. Plant height was significantly longer at 30 cm seeding interval and the shortest in 20 cm treatment. The length of the spike was the longest in the 40 cm seeding interval, and the number of seeds per spike was the highest in the 20cm seeding interval, but there was no significant difference among treatments. The seed yield was the highest at the 20 cm sowing interval (2,180 kg/ha), and decreased as the spacing increased. The dry matter content of seeds and straw was found to be 44.90% and 45.51% on average, and there was no significant difference among treatments. The amount of remaining straw after harvesting was found to be 7,506 kg/ha on average on DM basis, and was high at the 20 cm seeding interval. In view of the above results, it was found that it is most advantageous to sow at intervals of 20 cm when producing Italian ryegrass seeds through autumn sowing in the southern region.

Studies on Ripening Physiology of Rice plant. -I Difference in Ripening Structure between Jinheung and IR667 (수도(水稻)의 등숙생리(登熟生理)에 관(關)한 연구(硏究) -I 진흥(振興)과 IR667의 등숙구조비교(登熟構造比較))

  • Kwon, Hang Gwang;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.65-74
    • /
    • 1972
  • A local rice variety, Jinheung and newly bred IR667-Suwon 214 were grown in $5m^2$ concret pot with two spacings and two nitrogen levels and their ripening structure and its function were comparatively investigated to elucidate the causes of unusually low ripened grain ratio of IR667 lines. The following differences between two varieties were found. 1. Though IR667 had much lower ripened grain ratio (64%) than Jinheung (85%) grain yield(790 kg/10a) of IR667 was higher than that (760 kg/10a) of Jinheung. 2. Number of ripined grain per net assimiration rate (NAR) at 10 days after heading was a little higher in IR667 (6,490) than in Jinheung (6,360) consiting to lower grain weight ($29.9{\times}10^{-3}g$) in IR667 than $31.2{\times}10^{-3}g$ of Jinheung. But number of total grain per NAR was much higher (10,530) in IR667 than 7,290 of Jinheung indicating that it was the probable cause of low ripened grain ratio of IR667. 3. Extinction coeificient (K) was 0.115 in IR667 and 0.200 in Jinheung, thus IR667 could construct greater ripening structure per unit area. 4. Number of grain per LAI was decreased with increasing LAI at heading and the decreasing rate was similar for both IR667 and Jinheung. 5. Critical leaf area index at which crop growth rata (CGR) is maximum was 6.5 for IR667 and 5.2 for Jinheung. Below 5.2 of LAI net assimilation rate was always higher an Jinheung throughout the growing season. 6. The estimated optimum leaf area index having maximum grain yield was 7.4 for IR667 and 6.2 for Jinheung at 10 days after heading. However, actual leaf area index was 6.2 for IR-667 and 4.7 for Jinheung and these were even below critical leaf area index. 7. The decrease of LAI during ripening period was great in IR667 but photosynthesis per $m^2$ was decreased more rapidly in Jinheung. 8. Net assimilation rate (NAR) decreased with the increase of LAI at any time of ripening period. The decreasing rate of NAR with the increase of LAI was greater in IR667 with ripening. The greater decreasing rate of NAR in IR667 seemed to be attributed to low photosynthetic activity and high respiratory loss due to the requirement of higher optimum temperature of ripening. 9. Grain yield-ripened grain ratio curve showed less contribution of dry matter yield after heading to grain yield in IR667 than in Jinheung due to unfavorable ripening environment(specialy air temperature) indicating that yield of IR667 could most effectively increased through the improvement of ripening environment.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) (미세균열의 간격 분포를 이용한 결의 평가 (III))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for three quarrying planes and three rock cleavages was performed using the parameters such as (1) reduction ratio between the value of spacing and the value of length, (2) microcrack spacing frequency(N), (3) total spacing($1mm{\geq}$), (4) exponential constant(a), (5) magnitude of exponent(${\lambda}$), (6) mean spacing($S_{mean}$), (7) difference value($S_{mean}-S_{median}$) between mean spacing and median spacing($S_{median}$) and (8) density of spacing. Especially the close dependence between the above spacing parameters and the parameters from the spacing-cumulative frequency diagrams was derived. The discrimination factors representing three quarrying planes and three rock cleavages were acquired through these mutual contrast. The analysis results of the research are summarized as follows. First, the reduction ratios of frequency(N), mean value, median value, the above difference value($S_{mean}-S_{median}$) and density for three rock cleavages are in orders of G(grain, (G1 + G2)/2) < H(hardway, (H1 + H2)/2) < R(rift, (R1 + R2)/2), H < G $\ll$ R, H < G $\ll$ R, H < G < R and H < G $\ll$ R. The values of the above five parameters for three planes show the various orders of R'(rift plane) $\ll$ H'(hardway plane) < G'(grain plane), R' $\ll$ G' < H', R' < H' < G', R' < G' < H' and R' $\ll$ H' < G', respectively. Second, the values of (I) parameters(2, 3, 4 and 5) and (II) parameters(6, 7 and 8) are in orders of (I) H < G < R and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Third, to review the overall characteristics of the arrangement among the six diagrams, these diagrams show an order of R2 < R1 < G2 < G1 < H2 < H1 from the related chart. In other words, above six diagrams can be summarized in order of rift(R1 + R2) < grain(G1 + G2) < hardway(H1 + H2). These results indicate a relative magnitude of rock cleavage related to microcrack spacing. Especially, two parameters for each diagram, the above difference value($S_{mean}-S_{median}$) and mean spacing, could provide advanced information for prediction the order of arrangement among the diagrams. Finally, the general chart for three planes and three rock cleavages were made. From the related chart, three exponential straight lines for three rock cleavages show an order of R(R1 + R2) < G(G1 + G2) < H(H1 + H2). On the contrary, three lines for three planes show an order of H'(R2 + G2) < G'(R1 + H2) < R'(G1 + H1). Consequently, correlation of the mutually reverse order between three planes and three rock cleavages can be drawn from the related chart.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II) (미세균열의 간격 분포를 이용한 결의 평가(II))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.151-163
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for the three directions of rock cleavages was performed using the parameters such as (1) frequency of microcrack spacing(N), (2) total spacing(${\leq}1mm$), (3) mean spacing($S_{mean}$), (4) difference value($S_{mean}-S_{median}$) between mean spacing($S_{mean}$) and median spacing($S_{median}$), (5) density of spacing(${\rho}$), (6) difference value between two exponents for the whole range of the diagrams(${\lambda}_H-{\lambda}_L$), (7) mean value of exponent(${\lambda}_M$), (8) mean value of exponential constant($a_M$), (9) difference value between two exponents for the section under the initial points of intersection(${\lambda}t_H-{\lambda}t_L$), (10) mean value of exponent(${\lambda}t_M$) and (11) mean value of exponential constant($at_M$). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of (I) parameters(1, 2, 7 and 8) and (II) parameters(3, 4 and 5) are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2) and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Besides, the values of parameter $6({\lambda}_H-{\lambda}_L)$, parameter $9({\lambda}t_H-{\lambda}t_L)$, parameter $10({\lambda}t_M)$ and parameter $11(at_M)$ for three planes are in orders of R(rift plane, (G1 + H2)/2) < H(hardway plane, (R2 + G2)/2) < G(grain plane, (R1 + H2)/2), H < G < R, H < R < G and R < H < G, respectively. The values of the above four parameters for three rock cleavages show the various orders of R < H < G, R < H < G, H < G < R and H < G < R, respectively. Meanwhile, the spacing values equivalent to the initial points of contact and intersection between the two directions of diagrams were derived. The above spacing values for three rock cleavages are in order of rift(R1 and R2) < grain(G1 and G2) < hardway(H1 and H2). The spacing values for three planes are in order of rift plane(G1 and H1) < hardway plane(R2 and G2) < grain plane(R1 and H2). In particular, the intersection angles for three rock cleavages and three planes are in order of rift and rift plane < hardway and hardway plane < grain and grain plane. Consequently, the two diagrams of rift(R1 and R2) and rift plane(G1 and H1) show higher frequency of the point of contact and intersection. These characteristics of change were derived through the general chart for three planes and three rock cleavages. Lastly, the correlation analysis through the values of parameters along with the distribution pattern is useful for discriminating three quarrying planes.