• Title/Summary/Keyword: Spacer shape

Search Result 117, Processing Time 0.023 seconds

Thermotropic Compounds with Two Terminal Mesogenic Units and a Central Spacer, 8. Mutual Miscibility between the Dimesogenic, Nematic Compounds

  • Jin, Jung-Il;Choi, E-Joon;Park, Joo-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.353-357
    • /
    • 1986
  • Mutual miscibility between thermotropic, nematic compounds with two terminal mesogenic units and a central spacer was studied by differential scanning calorimetry (DSC) and on a polarizing microscope. It was found that the isomorphous, nematic dimesogenic compounds with wide variety of structures are miscible in mesophases with each other over the whole range of composition and that Schroder-van Laar equation almost correctly predicts the melting temperature and composition of eutectic mixtures. There was a pair of compounds which were exceptional and did not form a eutectic mixture and, instead, revealed a monotonous change in melting (T$_{m}$) and isotropic transition temperatures (T$_{i}$) as the composition of the mixture was varied. The compounds were of almost same structure in shape and seemed to undergo formation of solid solution.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

The Relationship between a Wear Depth :and a Decrease of the Contacting Force in the Nuclear Fuel Fretting (핵연료봉 프레팅마멸에서 마멸깊이와 접촉하중 감소사이의 관계)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Sliding wear tests have been performed to evaluate the effect of normal load decrease on the wear depth of nuclear fuel rods in room temperature air. The objectives of this study are to quantitatively evaluate the supporting ability of spacer grid springs, to estimate the wear depth by using the contacting force decrease and to compare the wear behavior with increasing test cycles (up to $10^7$) at each spring condition. The result showed that the contacting load decrease depends on the spring shape and the applied slip amplitude. The estimated wear depth is smaller when compared with measured wear depth. Based on the test results, the wear mechanism, the role of wear debris layer and the spring shape effect were discussed.

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

Taxonomic Re-evaluation of Colletotrichum gloeosporioides Isolated from Strawberry in Korea

  • Nam, Myeong Hyeon;Park, Myung Soo;Lee, He Duck;Yu, Seung Hun
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.317-322
    • /
    • 2013
  • For the past two decades, the causal agent of anthracnose occurring on strawberry in Korea was considered Colletotrichum gloeosporioides. However, the recent molecular analysis has shown that the genus Colletotrichum has undergone many taxonomic changes with introduction of several new species. As a result, it revealed that C. gloeosporioides indeed consisted of more than 20 distinct species. Therefore, the Korean pathogen isolated from strawberry should be reclassified. The shape and size of the conidia of the pathogen were not distinctly different from those of C. gloeosporioides and C. fructicola, but it differed in shape of the appressoria. A combined sequence analysis of partial actin, glyceraldehydes-3-phosphate dehydrogenase genes, and the internal transcribed spacer regions showed that the strawberry isolates formed a monophyletic group with authentic strains of C. fructicola. On the basis of these results, the anthracnose fungi of the domestic strawberry in Korea were identified as C. fructicola and distinguished from C. gloeosporioides.

ANALYSIS OF THE OPTIMIZED H TYPE GRID SPRING BY A CHARACTERIZATION TEST AND THE FINITE ELEMENT METHOD UNDER THE IN-GRID BOUNDARY CONDITION

  • Yoon Kyung-Ho;Lee Kang-Hee;Kang Heung-Seok;Song Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2006
  • Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized legions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed.

A Study of Particle-Initiated Breakdown Characteristics on a Spacer Surface for $SF_6$ GIS ($SF_6$ GIS용 스페이서 표면에서의 파티클에 의한 절연파괴 특성연구)

  • Kim, Jae-Ho;Lee, Yong-Gil;Kim, Dong-Eui;Lee, Sae-Hun;Kim, Jung-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1536-1539
    • /
    • 1994
  • The influence due to metallic particle contaminated on spacer surface is remarkable in the decreasing of dielectric strength in $SF_6$ GIS. In relation with this problem, We studied, AC flash-over voltage characteristics and breakdown mechanism are investigated under metallic particle initiated condition in $SF_6$ gas by varying the particle position, particle shape with a plane-plane electrode. The main results arc as follows 1. The small amount of the metallic particle in the gap do not make flash-over voltage to be influence, but the significant decrease of th flash-overed voltage is result in case of the big and long size of the metallic paraticle. 2. Influence of the flash-over voltage are lowest in the mid and are highest in the electrode of metallic particle position. 3. In case of the initiated metallie particle, The more the pressure are high, the more the recluced ratio of flash-over voltage are high. 4. The metallic particle shape which results in the reduced flash-over voltage forced the critical pressure to move in to the region of low pressure. 5. The existance of the metallic particle on the upper electrode side and high pressure make the decreasing ratio of flash-over voltage bigger than that of the ground side electrode.

  • PDF

Sequence and phylogenetic analysis of Intergenic spacer (IGS) region of ten microsporian isolates infecting Indian vanya silkworms (Samia cynthia ricini and Antheraea assamensis).

  • Hassan, Wazid;Surendra Nath, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • Ten microsporidian isolates from Samia cynthia ricini, and Antheraea assamensis in India along with a Nosema reference strain (NIK-1s_mys) from B. mori India were characterised morphologically and molecular based tools. The test isolates observed elongated oval in shape while reference strain was oval and ranging from 3.80 to 4.90 m in length and 2.60 to 3.05 m in width. The ribosomal DNA region 'IGS' of test isolates assessed by PCR amplification, followed by cloning and sequencing. IGS sequence and phylogenetic analysis of test microsporidian isolates showed very close relationship with three Nosema references species: N. philosamia, N. antheraea isolated from Philosamia cynthia ricini and Antheraea perny in China respectively and N. disstriae from Malacosma disstriae in Canada. The clustering pattern of dendogram reveals all test isolates appear distinct from Nosema std. (NIK-1s_mys) India used as reference strain in the study. The result suggests IGS indeed a suitable and highly applicable molecular tool for identifying and characterise the microsporidian isolates in similar population.

Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design (공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계)

  • Song, Gi-Nam;Gang, Byeong-Su;Choe, Seong-Gyu;Yun, Gyeong-Ho;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1623-1630
    • /
    • 2002
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

Electric Field Optimization using the NURB curve in a Gas-Insulated Switchgear (NURB 곡선을 이용한 가스절연 원통형 관로 내에서의 전계 최적화)

  • Han, In-Su;Kim, Eung-Sik;Min, Suk-Won;Lee, June-Ho;Park, Jong-Keun;Lee, Tae-Hyung;Park, Choon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.548-558
    • /
    • 2009
  • This paper attempts to develop an algorithm which optimizes the electric field through the so-called NURB(Non-Uniform Rational B-spline) curve in order to improve the insulation capacity. In particular, the NURB curve is a kind of interpolation curve that can be expressed by a few variables. The electric field of a conductor is computed by Charge Simulation Method(CSM) while that of a spacer by Surface Charge Method(SCM); this mixed calculation method is adopted for the electric field optimization. For calculation of the initial and optimal shapes, the Gauss-Newton method, which is quite easy to formulate and has slightly faster convergence rate than other optimization techniques, was used. The tangential electric field, the total electric field, and the product of the tangential electric field and area (Area Effect) were chosen as the optimization objective function by the average value of electric field for the determined initial shape.