• 제목/요약/키워드: Spacecraft Structure

검색결과 141건 처리시간 0.025초

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

감쇠비 불확실성을 고려한 유연구조물의 H 제어기 설계 (H Controller Design of Flexible Space Structure with the Uncertainty of Damping Ratio)

  • 채장수;박태원
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.602-608
    • /
    • 2002
  • The flexible structure like solar array and antenna in spacecraft shows very sensitive responses to the inner or outer disturbance and noise. And the spacecraft becomes more complex and larger as it has various mission and role. But since the spacecraft need to have the limited mass, the thin and light material should be selected and this necessity induces the decrease d natural frequency and structural stiffness. It reduces the ability of adapting to the disturbance and induces the structural unstability. Certainly, the disturbance does not only make the structural unstability, but also give the bad effect to the precise attitude control. So it is necessary to control the vibration in the space. In this paper, the flexible structure control modeling with piezo sensor and piezo actuator is developed. The model uncertainty of damping ratio is overcome by robust control. The system equation is induced by the finite element method.

반작용 휠을 이용한 인공위성 지상 자세제어 실험 연구 (An experimental study on attitude control of spacecraft using roaction wheel)

  • 한정엽;박영웅;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1334-1337
    • /
    • 1997
  • A spacecraft attitude control ground hardware simulator development is discussed in the paper. The simulator is called KT/KARI HILSSAT(Hardware-In-the Loop Simulator Single Axis Testbed), and the main structure consists of a single axis bearing and a satellite main body model on the bearing. The single axis tabel as ans experimental hardware simulator that evaluates performance and applicability of a satellite before evolving and/or confirming a mew or and old control logic used in the KOREASAT is developed. Attitude control of spaceraft by using reaction wheel is performed.

  • PDF

위성체 태양전지판 구조물의 열적 플러터 해석 (Thermal Flutter Analysis of Spacecraft Solar Array Structure)

  • 윤일성;강호식;정남희;송오섭
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.26-32
    • /
    • 2005
  • 본 논문에서는 위성체 태양전지의 진동응답을 분석하였다. 태양전지는 복합재료 얇은 벽보와 태양전지 판 및 보조 바로 구성되어 있다. 복합재료 얇은 벽보는 전단 변형, 12차 와핑, 회전 관성과 재료의 방향성 등을 고려해야 한다. 태양전지 판은 z 방향으로 일정한 장력이 가해지는 얇은 막이며 보조 바는 강체 구조물이다. 열적 구배에 따른 구조 변형에 의한 영향을 고려하여 연성된 열적 구조 해석을 수행하였으며, 열적 불안정성 조건이 되는 안정성 기준 인자들을 분석하였다.

Influence of torsional rigidity of flexible appendages on the dynamics of spacecrafts

  • Chiba, Masakatsu;Magata, Hidetake
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.19-38
    • /
    • 2019
  • The influence of torsional rigidity of hinged flexible appendage on the linear dynamics of flexible spacecrafts with liquid on board was analyzed by considering the spacecraft's main body as a rigid tank, its flexible appendages as two elastically supported elastic beams, and the onboard liquid as an ideal liquid. The meniscus of the liquid free surface due to surface tension was considered. Using the Lagrangian of the spacecraft's main body (rigid tank), onboard liquid, and two beams (flexible appendages) in addition to assuming the system moved symmetrically, the coupled system frequency equations were obtained by applying the Rayleigh-Ritz method. The influence of the torsional rigidity of the flexible appendages on the spacecraft's coupled vibration characteristics was primary focus of investigation. It was found that coupled vibration modes especially that of appendage considerably changed with torsion spring parameter ${\kappa}_t$ of the flexible appendage. In addition, variation of the main body displacement with system parameters was investigated.

위성체에 장착된 얇은 벽 복합재 보의 열 진동 특성 (Thermal Vibration Characteristics of a Thin Walled Composite Beam attached on Spacecraft)

  • 김규선;송오섭
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.47-54
    • /
    • 2010
  • 위성체에 장착된 얇은 벽 복합재보에 대한 열 진동 특성에 대한 연구를 수행하였다. 복합재 보는 얇은 벽과 원주 방향으로 강성이 일정하다고 가정을 하였으며, 기존에 우주사용 적합성이 증명된 T300/Epoxy, YS90A/Epoxy와 같은 소재를 채택하여 모델링을 하였다. 자세제어 오차각 및 복합재 보의 끝단 변위에 대한 정적상태 및 정점-정점 오차를 열 진동 특성의 성능지수로 하여 평가하였으며, 평가결과 YS90A 복합재가 자세제어 오차각의 정점-정점 각도에서 2배 정도의 우수한 성능을 보여 주었다.

STRUCTURE OF A MAGNETIC DECREASE OBSERVED IN A COROTATING INTERACTION REGION

  • LEE, ENSANG;PARKS, GEORGE K.
    • 천문학회지
    • /
    • 제49권1호
    • /
    • pp.19-23
    • /
    • 2016
  • Magnetic decreases are often observed in various regions of interplanetary space. Many studies are devoted to reveal the physical nature and generation mechanism of the magnetic decreases, but still we do not fully understand magnetic decreases. In this study, we investigate the structure of a magnetic decrease observed in a corotating interaction region using multi-spacecraft measurements. We use three spacecraft, ACE, Cluster, and Wind, which were widely separated in the x- and y-directions in the geocentric solar ecliptic (GSE) coordinates. The boundaries of the magnetic decrease are the same at the three locations and can be identified as tangential discontinuities. A notable feature is that the magnetic decrease has very large dimension, ≳ RE, along the boundary, which is much larger than the size, ~ 6 RE, along the normal direction. This suggests that the magnetic decrease has a shape of a long, thin rod or a wide slab.

Dynamic Modeling and Control of Flexible Space Structures

  • Chae, Jang-Soo;Park, Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1912-1921
    • /
    • 2003
  • This paper presents a global mode modeling of space structures and a control scheme from the practical point of view. Since the size of the satellite has become bigger and the accuracy of attitude control more strictly required, it is necessary to consider the structural flexibility of the spacecraft. Although it is well known that the finite element (FE) model can accurately model the flexibility of the satellite, there are associated problems : FE model has the system matrix with high order and does not provide any physical insights, and is available only after all structural features have been decided. Therefore, it is almost impossible to design attitude and orbit controller using FE model unless the structural features are in place. In order to deal with this problem, the control design scheme with the global mode (GM) model is suggested. This paper describes a flexible structure modeling and three-axis controller design process and demonstrates the adequate performance of the design with respect to the maneuverability by applying it to a large flexible spacecraft model.

소형 복합재 위성 구조체 개발 (Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program)

  • 조희근;서정기;김병중;장태성;차원호;이대길;명로훈
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.727-736
    • /
    • 2010
  • 과학기술위성 3호는 국내 최초의 전구조 복합재 위성이다. 이전에 개발된 위성은 대부분 태양전지판 등 부분적인 복합재 구조로 된 것도 있으나 전 구조 복합재 위성은 개발된 적이 없었다. 본 연구는 소형 복합재 위성의 버스 구조체 개발을 위한 복합재 응용 설계 및 제작 기술의 적용과 그 활용에 중점을 두고 있다. 특히 과학기술위성 3호의 버스구조체는 이전에 개발된 위성의 구조체 와는 전혀 다른 형태로 개발되었다.

THE SOLAR-B MISSION

  • ICHIMOTO KIYOSHI;TEAM THE SOLAR-B
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.307-310
    • /
    • 2005
  • The Solar-B is the third Japanese spacecraft dedicated for solar physics to be launched in summer of 2006. The spacecraft carries a coordinated set of optical, EUV and X-ray instruments that will allow a systematic study of the interaction between the Sun's magnetic field and its high temperature, ionized atmosphere. The Solar Optical Telescope (SOT) consists of a 50cm aperture diffraction limited Gregorian telescope and a focal plane package, and provides quantitative measurements of full vector magnetic fields at the photosphere with spatial resolution of 0.2-0.3 arcsec in a condition free from terrestrial atmospheric seeing. The X-ray telescope (XRT) images the high temperature (0.5 to 10 MK) corona with improved spatial resolution of approximately 1 arcsec. The Extreme Ultraviolet Imaging Spectrometer (EIS) aims to determine velocity fields and other plasma parameters in the corona and the transition region. The Solar-B telescopes, as a whole, will enable us to explore the origins of the outer solar atmosphere, the corona, and the coupling between the fine magnetic structure at the photosphere and the dynamic processes occurring in the corona. The mission instruments (SOT/EIS/XRT) are joint effort of Japan (JAXA/NAO), the United States (NASA), and the United Kingdom (PPARC). An overview of the spacecraft and its mission instruments are presented.