• 제목/요약/키워드: Space-Time Scan Statistics

검색결과 7건 처리시간 0.018초

Identifying High-Risk Clusters of Gastric Cancer Incidence in Iran, 2004 - 2009

  • Kavousi, Amir;Bashiri, Yousef;Mehrabi, Yadollah;Etemad, Korosh;Teymourpour, Amir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10335-10337
    • /
    • 2015
  • Background: Gastric cancer is considered as the second most prevalent cancer in Iran. The present research sought to identify high risk clusters of gastric cancer with mapping using space-time scan statistics. Materials and Methods: The present research is of descriptive type. The required data were gathered from the registered cancer reports of Cancer Control Office in the Center for Non Communicable Disease of the Ministry of Health (MOH). The data were extracted at province level in the time span of 2004-9. Sat-Scan software was used to analyse the data and to identify high risk clusters. ArcGIS10 was utilized to map the distribution of gastric cancer and to demonstrate high risk clusters. Results: The most likely clusters were found in Ardabil, Gilan, Zanjan, East-Azerbaijan, Qazvin, West-Azerbaijan, Kurdistan, Hamadan, Tehran and Mazandaran between 2007 and 2009. It was statistically significant at the p-value below 0.05. Conclusions: High risk regions included Northern, West-North and central provinces, particularly Ardabil, Kurdistan, Mazandaran and Gilan. More screening tests are suggested to be conducted in high risk regions along with more frequent epidemiological studies to enact gastric cancer prevention programs.

시공간검정통계량을 이용한 도시범죄의 핫스팟분석 (Hotspot Analysis of Urban Crime Using Space-Time Scan Statistics)

  • 정경석;문태헌;정재희
    • 한국지리정보학회지
    • /
    • 제13권3호
    • /
    • pp.14-28
    • /
    • 2010
  • 본 연구의 목적은 공간적 분포 특성만을 고려하고 있는 기존의 핫스팟분석에 대한 대안적인 방법으로서 공간상에서 나타나는 사건간의 인과관계를 시간영역으로까지 확장하여 동시적 분석이 가능한 시공간분석 방법을 제안하는 것이다. 분석방법으로는 먼저 지리정보시스템을 이용하여 지방중소도시인 M시의 범죄자료를 데이터화 하였고, Ripley K함수와 시공간검정통계량 분석을 통해 M시의 범죄분포 패턴을 지도화 하였다. 연구결과, 범죄위험도가 유의미하게 높은 지역들이 나타났으며, 이들 시공간적 범죄 집중지역들은 기존의 공간분포만을 고려한 범죄분포 패턴과는 다소 차이가 있음을 발견할 수 있었다. 본 연구결과는 시공간적인 범죄분포 특성에 맞는 맞춤형의 경찰 인력 배치와 배분, 그리고 치안행정 서비스 등의 조정을 위한 참고자료로서, 또한 시공간적인 집중을 보이는 이들 지역을 중심으로 물리적 환경 변화의 유도와 공간이용의 개선 효과를 통해 범죄율을 줄여나가는 범죄예방 활동 및 정책수립을 위한 기초자료로도 유용하게 활용될 수 있을 것으로 기대된다.

County Level Clustering on Alcohol and HIV Mortality

  • Park, Byeonghwa
    • Communications for Statistical Applications and Methods
    • /
    • 제20권1호
    • /
    • pp.53-62
    • /
    • 2013
  • This study focuses on spatial/temporal relationship deaths caused by Human Immunodeficiency Virus (HIV) and Alcohol Use Disorder (AUD). Several studies have found links between these two diseases. By looking for clusters in mortality of Alcohol and HIV related deaths this study contributes to the field through the identification of exact spatial/temporal time of high and low occurrence risks based on the observed over the expected number of deaths. This study does not provide political or social interpretations of the data. It merely wants to show where clusters are found.

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

Detection of Hotspots on Multivariate Spatial Data

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1181-1190
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. Until now, the echelon analysis has been applied only to univariate spatial data. As a result, it is impossible to detect the hotspots on the multivariate spatial data In this paper, we expand the spatial data to time series structure. And then we analyze them on the time space and detect the hotspots. Echelon dendrogram has been made by piling up each multivariate spatial data to bring time spatial data. We perform the structural analysis of temporal spatial data.

  • PDF

서울시 R&D 산업체의 시공간 클러스터 분석 (Space-time cluster research of R&D industry in Seoul, Korea)

  • 박선영;김영호
    • 한국경제지리학회지
    • /
    • 제16권3호
    • /
    • pp.492-511
    • /
    • 2013
  • 국제회계기준위원회(IASB)에서 규정한 R&D 산업은 다양한 분야에서 '연구'와 '개발'을 동시에 진행하는 3차 산업에 해당한다. R&D 산업과 관련한 기존 정성적 연구들은 공간군집 사례들을 기반으로 분류한 클러스터 유형 중 하나인 하이테크 혁신 클러스터로 취급하여 분석한다(Coe et al., 2007). 그러나 이는 다양한 R&D 산업의 공간군집 사례들을 일반화하는데 그쳤으며, 특히 클러스터 형성 과정에서 시간의 흐름을 고려하지 않은 R&D 클러스터가 시공간적으로 유의미한 것인지 알 수 없다. 이에 본 연구는 기존 공간적인 혹은 시간적인 측면만을 강조하는 클러스터 분석의 한계를 인식하고, 섬유 및 의복 제조업의 비교를 통해 R&D 시공간 클러스터를 탐색해본다. 연구방법으로는 시공간 클러스터의 발견 및 위치탐색을 위해 시공간 K-함수와 시공간 스캔통계를 이용하였다. 그 결과, R&D는 공간적 측면만 고려한 분석에서는 유의미한 클러스터가 발견되었지만, 공간적 분포와 시간적 흐름을 동시에 고려한 시공간 클러스터는 발견되지 않았다. 즉, 시간에 따른 R&D의 신설 과정은 이미 존재하는 R&D의 공간적 위치와 독립적인 것으로 나타났다. 반면 섬유 및 의복 제조업은 공간과 시공간 클러스터 모두 유의미한 클러스터를 발견했다.

  • PDF

시공간 클러스터링 분석을 이용한 2010~2011 국내 발생 구제역 전파양상 (Temporospatial clustering analysis of foot-and-mouth disease transmission in South Korea, 2010~2011)

  • 배선학;신연경;김병한;박선일
    • 대한수의학회지
    • /
    • 제53권1호
    • /
    • pp.49-54
    • /
    • 2013
  • To investigate the transmission pattern of geographical area and temporal trends of the 2010~2011 foot-and-mouth disease (FMD) outbreaks in Korea, and to explore temporal intervals at which spatial clustering of FMD cases space-time analysis based on georeferenced database of 3,575 burial sites, from 30 November 2010 to 23 February 2011, was performed. The cases represent approximately 98.1% of all infected farms (n = 3,644) during the same period. Descriptive maps of spatial patterns of the outbreaks were generated by ArcGIS. Spatial Scan Statistics, using SaTScan software, was applied to investigate geographical clusters of FMD cases across the country. Overall, spatial heterogeneity was identified, and the transmission pattern was different by province. Cattle have more clusters in number but smaller in size, as compared to the swine population. In addition, spatiotemporal analysis and the comparison of clustering patterns between the first 7 days and days 8 to 14 of the outbreak revealed that the strongest spatial clustering was identified at the 7-day interval, although clustering over longer intervals (8~14 days) was also observed. We further discussed the importance of time period elapsed between FMD-suspected notice and the date of confirmation, and emphasized the necessity of region-specific and species-specific control measures.