• Title/Summary/Keyword: Space-Time Block Codes (STBC)

Search Result 35, Processing Time 0.022 seconds

Performance Analysis of STBC System Combined with Convolution Code fot Improvement of Transmission Reliability (전송신뢰성의 향상을 위해 STBC에 컨볼루션 코드를 연계한 시스템의 성능분석)

  • Shin, Hyun-Jun;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1068-1074
    • /
    • 2011
  • In this paper, the proposed scheme is STBC(space-time block codes) system combined with convolution code which is the most popular channel coding to ensure the reliability of data transmission for a high data rate wireless communication. The STBC is one of MIMO(multi-input multi-output) techniques. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and convolution code, the proposed scheme has a little high quantity of computation but it can get a maximal diversity gain of STBC and a high coding gain of convolution code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. Simulation results show that the modified viterbi algorithm improved gain 7.5 dB on STBC 2Tx-2Rx at $BER=10^{-2}$. Therefore the proposed scheme using STBC combined with convolution code can improve the transmission reliability and transmission efficiency.

On the Ergodic Capacity of STBCs from GCIODs over Nakagami-m Fading Channels (Nakagami-m 페이딩 채널에서 GCIODs로 얻은 STBCs의 에르고딕 용량에 대한 연구)

  • Lee, Hoo-Jin;Chung, Young-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.415-422
    • /
    • 2010
  • In this paper, we derive exact closed-form formulas, in terms of Meijer's G-function, for the ergodic capacity of space-time block codes (STBCs) from generalized linear complex orthogonal designs (GLCODs) and generalized coordinate interleaved orthogonal designs (GCIODs) in quasi-static frequency-nonselective i.i.d. Nakagami-m fading channels. The derived analytical results show an excellent agreement with Monte-Carlo simulation results. Thus, a useful means for analyzing and predicting the ergodic capacity performance of STBCs from GLCODs or GCIODs can be provided in various antenna configurations and different channel conditions without extensive Monte-Carlo simulations. We present some numerical results to verify the accuracy of the derived formulas.

Decision Feedback Detector for Space-Time Block Codes over Time-Varying Channels

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.506-513
    • /
    • 2003
  • Most existing space-time coding (STC) schemes have been developed for flat fading channels. To obtain antenna diversity gain, they rely on channel state information (CSI) required at the receiver through channel estimation techniques. This paper proposes a new decision feedback decoding scheme for Alamouti-based space-time block coding (STBC) transmission over time-selective fading channels. In wireless channels, time-selective fading effects arise mainly due to Doppler shift and carrier frequency offset, Modelling the time-selective fading channels as the first-order Gauss-Markov processes, we use recursive algorithms such as Kalman filtering, LMS and RLS algorithms for channel tracking. The proposed scheme consists of the symbol decoding stage and channel tracking algorithms. Computer simulations confirm that the proposed scheme shows the better performance and robustness to time-selectivity.

Implementation of Software Platform for STBC-OFDM based WiBro Systems (STBC-OFDM 기반의 WiBro 시스템 소프트웨어 플랫폼 구현)

  • Bae, Jung-Nam;Oh, Young-Chul;Yoo, Sang-Hoon;Wi, Hynn-Ho;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.525-530
    • /
    • 2008
  • There are a few core technologies to enable high-performance $4^{th}$ generation (4G) broadband wireless communication system. A multiple input multiple output (MIMO) provides high-rate transmission through expended channels by multiple array antennas in both sender and receiver side. Also orthogonal frequency division multiplexing (OFDM) is well-known as the most appropriate technique for high data rate transmission such as Mobile WiMAX and WLAN. Efficient decrease of inter-carrier interference (ISI) and inter-carrier interference (ICI) are the reasons for why OFDM is suitable for high-performance transmission, 4G mobile communication. In this paper, we mainly focus on two of objects, combination between MIMO and OFDM, and OFDM channel simulator using Ray-tracing algorithm. The results of this paper can be used implementation of a Wireless Software Platform for 4G Mobile Communication Systems.

  • PDF

Enhanced Wireless Network Security in Military Environments (군사 환경에서의 향상된 무선 네트워크 보안)

  • Kim, Jin Woo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1341-1348
    • /
    • 2016
  • In this paper, we propose method to enhance security performance using HT-STBC with artificial noise under Wier-Tap channel model that exist with legitimate receiver and illegal eavesdropper. Conventional STBC with artificial noise scheme has a weakness that a limited increase in the BER of the difference between the receiver and an eavesdropper, when used over QPSK modulation. To solve this problem, we suggest HT-STBC combining hadamard transform and STBC with artificial noise for reduce BER of receiver than the conventional scheme and demonstrated through simulation that also increased BER difference between the receiver and an eavesdropper. By the simulation results, when used proposed scheme, showed approximately 3dB improvement in performance compared to the conventional scheme.

Performance Analysis of MIMO-OFDM System over Nakagami Fading Channel (나카가미 페이딩 채널하에서 MIMO-OFDM 시스템의 성능분석)

  • Kang, Kyung-Sik;Kim, Won-Sub;Park, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1797-1804
    • /
    • 2011
  • In this paper, I analyzed array organization of MIMO channel antenna and effect of operation environment by evaluating average BER from linear Space-Time Block Code orthogonal design and suggests designing condition of MT antenna for improved BER and the fading index m. To analyze system performance, I used M-PSK and M-QAM modulation, and to use analysis equations I used integrated by Nakagami fading variable, non-integrated Nakagami fading variable. We can get the organization of channel array by using mathematical calculation on matrix. STBE BER performance will decrease as AOA spreading decrease and such loss can be compensated from extending antenna spacing, and changing array organization.

Code Combining Cooperative Diversity in Long-haul Transmission of Cluster based Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1293-1310
    • /
    • 2011
  • A simple modification of well known Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is proposed to exploit cooperative diversity. Instead of selecting a single cluster-head, we propose M cluster-heads in each cluster to obtain a diversity of order M. The cluster-heads gather data from all the sensor nodes within the cluster using same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative diversity protocol which is similar to coded cooperation that maximizes the performance of the proposed cooperative LEACH protocol. The implementation of the proposed cooperative strategy is analyzed. We develop the upper bounds on bit error rate (BER) and frame error rate (FER) for our proposal. Space time block codes (STBC) are also a suitable candidate for our proposal. In this paper, we argue that the STBC performs worse than the code combining cooperation.

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

Performance Evaluation of Turbo Codes by Soft Detection Metrics of STBC over an IEEE 802.16e Link (IEEE 802.16e 링크에서 시공간 블록 부호의 연판정 검출에 따른 터보 부호의 성능평가)

  • Kim, Young-Min;Kim, Soo-Young;Lim, Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Multi antenna techniques using space-time codes can achieve diversity gains in a multi-path environment without additional bandwidth requirement. Most of the 4G candidate standards including the IEEE 802.16e adopt multi-input multi-output (MIMO) schemes to achieve either high throughput performance or diversity gains. In these 4G candidate standards, turbo codes using an iterative decoder with soft input soft output are used to overcome serious channel fading. For this reason, the estimated signal values from MIMO detectors should be soft decision detection values. In this paper, we propose efficient methods to estimate soft decision detection values for various space time coding schemes, and provide the simulation results of turbo coded space time coding scheme over an IEEE 802.16e link.

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.