• Title/Summary/Keyword: Space surveillance system

Search Result 126, Processing Time 0.03 seconds

Vehicle Tracking System using HSV Color Space at nighttime (HSV 색 공간을 이용한 야간 차량 검출시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • We suggest that HSV Color Space may be used to detect a vehicle detecting system at nighttime. It is essential that a licence plate should be extracted when a vehicle is under surveillance. To do so, a licence plate may be enlarged to certain size after the aimed vehicle is taken picture from a distance by using Pan-Tilt-Zoom Camera. Either Mean-Shift or Optical Flow Algorithm is generally used for the purpose of a vehicle detection and trace, even though those algorithms have tendency to have difficulty in detection and trace a vehicle at night. By utilizing the fact that a headlight or taillight of a vehicle stands out when an input image is converted in to HSV Color Space, we are able to achieve improvement on those algorithms for the vehicle detection and trace. In this paper, we have shown that at night, the suggested method is efficient enough to detect a vehicle 93.9% from the front and 97.7% from the back.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

A Study on ISpace with Distributed Intelligent Network Devices for Multi-object Recognition (다중이동물체 인식을 위한 분산형 지능형네트워크 디바이스로 구현된 공간지능화)

  • Jin, Tae-Seok;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.950-953
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd.

  • PDF

Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System (비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거)

  • Lee, Young-Sook;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.574-578
    • /
    • 2009
  • Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.

  • PDF

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Observation Performance Analysis of the Telescope System according to the Offset Compensation Cycle (옵셋 보정 주기에 따른 망원경 시스템 관측 성능 분석)

  • Lee, Hojin;Hyun, Chul;Lee, Sangwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this paper, the observation performance of the electro-optical telescope system which surveils the unknown space objects, is analyzed by the Modeling & Simulation(M&S). The operation concept for the observation of the unknown space objects using two telescope systems is considered and the M&S models are constructed. Based on the operation concept for observing the unknown space objects, the estimated orbit is generated by Initial Orbit Determination(IOD) and the observation performance is analyzed according to the offset compensation cycle for the estimated orbit. The result of the M&S based analysis in this paper shows that the observation performance increases with the shorter offset compensation cycle, and decreases with the longer offset compensation cycle. Therefore, to improve the performance of the telescope system which surveils the unknown space objects, the observation system with accurate initial orbit determination or shorter offset compensation cycle should be designed and constructed.

Development of Ship Identification and Display System using Unmaned Aerial Vehicle System (무인항공기 시스템을 활용한 선박 식별 및 도시 시스템 개발)

  • Choy, Seong-min;Ko, Yun-ho;Kang, Youngshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.862-870
    • /
    • 2016
  • AIS and V-PASS, which are used for safe navigation and automatic vessel arrival and departure, are mandatory standard equipment installed on all ships. If an aircraft is equipped with a ship identification system using AIS and V-PASS, and then ship identification information is received by a vessel such as a large fishery inspection boat or a patrol ship or a ground control system, we can quickly perform maritime surveillance and disaster response. This paper describes the development of a ship identification and display system using a ship identification device for aircraft. Flight test results and a future application plan are also included.

A Design of Mobile Robot based on Camera and Sound Source Localization for Intelligent Surveillance System (지능형 감시 시스템 구축을 위한 영상과 음원 추적 기반 임베디드 모바일로봇 개발)

  • Park, Jung-Hyun;Kim, Hyung-Bok;Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.532-537
    • /
    • 2009
  • The necessity of intelligent surveillance system is gradually considered seriously from the space where the security is important. In this paper, we embodied unmanned intelligent system by developing embedded mobile robot based on images and sounds tracking. For objects tracking, we used block-matching algorithm and for sound source tracking, we calculated time differences and magnitude dissimilarities of sound. And we demonstrated the superiority of intruder tracking algorithm through the embodiment of Pan-Tilt camera and sound source tracking module using system, Network camera and mobile robot using system and mobile robot using system. By linking security system, the suggested system can provide some interfacing functions for the security service of the public facilities as well as that of home.