• 제목/요약/키워드: Space reactor

검색결과 245건 처리시간 0.025초

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

Review of Computational Methods for Space-time Reactor Kinetics

  • Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.219-229
    • /
    • 1979
  • The current status of the computational methods and computer codes for the analysis of reactor kinetics is reviewed. Computational methods which have been developed for space-dependent transient analyses are presented and recent progress in the development of methods is discussed.

  • PDF

DEVELOPMENT OF A RECONFIGURABLE CONTROL FOR AN SP-100 SPACE REACTOR

  • Na Man-Gyun;Upadhyaya Belle R.
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.63-74
    • /
    • 2007
  • In this paper, a reconfigurable controller consisting of a normal controller and a standby controller is designed to control the thermoelectric (TE) power in the SP-100 space reactor. The normal controller uses a model predictive control (MPC) method where the future TE power is predicted by using support vector regression. A genetic algorithm that can effectively accomplish multiple objectives is used to optimize the normal controller. The performance of the normal controller depends on the capability of predicting the future TE power. Therefore, if the prediction performance is degraded, the proportional-integral (PI) controller of the standby controller begins to work instead of the normal controller. Performance deterioration is detected by a sequential probability ratio test (SPRT). A lumped parameter simulation model of the SP-100 nuclear space reactor is used to verify the proposed reconfigurable controller. The results of numerical simulations to assess the performance of the proposed controller show that the TE generator power level controlled by the proposed reconfigurable controller could track the target power level effectively, satisfying all control constraints. Furthermore, the normal controller is automatically switched to the standby controller when the performance of the normal controller degrades.

Development of pH-Responsive Core-Shell Microcapsule Reactor

  • Akamatsu, Kazuki;Yamaguchi, Takeo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.191-194
    • /
    • 2004
  • A novel type of intelligent microcapsule reactor system was prepared. The reactor can recognize pH change in the medea and control reaction rate by itself. For the reactor system, acrylic acid (AA), N-isopropylacrylamide (NIPAM), and glucose oxidase (GOD) were selected as a pH-responsive device, a gating device according and a reaction device, respectively. Poly(NIPAM-co-AA) (P-NIPAM-co-AA) are known to change its hydrophilicity-hydrophobicity due to pH change. They were integrated in a core-shell microcapsule space. GOD was loaded inside the core space and the pores in the outside shell layer were filled with P-NIPAM-co-AA linear grafted chains as pH-responsive gates by plasma graft filling polymerization method. When P-NIPAM-co-AA gates are hydrophilic at high pH value, this microcapsule permits glucose penetration into the core space and GOD reaction proceeds. However, when P-NIPAM-co-AA gates are hydrophobic at low pH value, this microcapsule forbids glucose penetration and GOD reaction will not occur. The accuracy of this concept was examined.

  • PDF

Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

  • Xiaoquan Chen;Peng Du;Rui Tian;Zhuoyao Li;Hongkun Lian;Kun Zhuang;Sipeng Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.364-372
    • /
    • 2023
  • The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700K-900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.

전산 모델링을 통한 모노리스 촉매형 메탄화 반응기의 성능 특성 연구 (Computer Simulation of Methanation Reactor with Monolith Catalyst)

  • 지준화;김성철;홍진표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.425-435
    • /
    • 2014
  • Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.