• Title/Summary/Keyword: Space radiation

Search Result 1,047, Processing Time 0.024 seconds

The Visualization and the Fast Detection of Gamma Radiation Source using Stereo Image Processing (영상처리기반 감마선원 거리탐지 고속화 및 가시화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.2001-2006
    • /
    • 2016
  • The stereo radiation detection system detects the gamma source and acquires two dimensional left and right images for gamma source and visible objects using the detection result. And then the system measures the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we implemented the fast detection algorithm for gamma source from the system in 3D space to reduce the detection time with image processing algorithms. Additionally, the system's performance is verified through experiments on gamma irradiation facilities. As a result, if the fast detection algorithm applied to the system, we can confirm that the detection system represents a 35% better performance than the conventional detection method that is full scanning to acquire the stereo image. We also have visualized a gamma source distribution through a 3D monitor using the stereo vision algorithm in order to provide the information of radiation spatial distribution to the user efficiently.

The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing (영상처리기반 감마선 분포탐지 효율 개선에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.780-781
    • /
    • 2016
  • The stereo radiation detection system detects gamma ray source and measures the two dimensional distribution image based on the detection result. Then the system is implemented to measure the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we reduced the time for a gamma-ray scan space detection through image processing algorithms. In addition, it combines radiation and visible light images. Then we conducted a study for improving the distribution of gamma-ray detection efficiency through the stereo calibration using a 3D visualization. As a result, we obtain an improved detection time by more than 30% and have acquired a visible image with a 3D monitor.

  • PDF

Estimation of the SARS-CoV-2 Virus Inactivation Time Using Spectral Ultraviolet Radiation (파장별 지표 자외선 복사량을 이용한 SARS-CoV-2 바이러스 비활성화 시간 추정 연구)

  • Park, Sun Ju;Lee, Yun Gon;Park, Sang Seo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • Corona Virus Disease 19 pandemic (COVID-19) causes many deaths worldwide, and has enormous impacts on society and economy. The COVID-19 was caused by a new type of coronavirus (Severe Acute Respiratory Syndrome Cornonavirus 2; SARS-CoV-2), which has been found that these viruses can be effectively inactivated by ultraviolet (UV) radiation of 290~315 nm. In this study, 90% inactivation time of the SARS-CoV-2 virus was analyzed using ground observation data from Brewer spectrophotometer at Yonsei University, Seoul and simulation data from UVSPEC for the period of 2015~2017 and 2020. Based on 12:00-13:00 noon time, the shortest virus inactivation time were estimated as 13.5 minutes in June and 4.8 minutes in July/August, respectively, under all sky and clear sky conditions. In the diurnal and seasonal variations, SARS-CoV-2 could be inactivated by 90% when exposed to UV radiation within 60 minutes from 10:00 to 14:00, for the period of spring to autumn. However, in winter season, the natural prevention effect was meaningless because the intensity of UV radiation weakened, and the time required for virus inactivation increased. The spread of infectious diseases such as COVID-19 is related to various and complex interactions of several variables, but the natural inactivation of viruses by UV radiation presented in this study, especially seasonal differences, need to be considered as major variables.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

Development of proton test logic of RFSoC and Evaluation of SEU measurement (RFSoC의 양성자 시험 로직 개발 및 SEU 측정 평가)

  • Seung-Chan Yun;Juyoung Lee;Hyunchul Kim;Kyungdeok Yu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 2024
  • In this paper, we present the implementation of proton beam irradiation test logic and test results for Xilinx's RFSoC FPGA. In addition to the FPGA function, RFSoC is a chip that integrates CPU, ADC, and DAC and is attracting attention in the defense and space industries aimed at reducing the size of the chip. In order to use these chips in a space environment, an analysis of radiation effects was required and radiation mitigation measures were required. Through the proton irradiation test, the logic to measure the radiation effect of RFSoC was designed. Logic for comparing values stored in memory with normal values was implemented, and protons were irradiated to RFSoC to measure SEU generated in the block memory area. To alleviate the occurrence of SEU in other areas, TMR and SEM were applied and designed. Through the test results, we intend to verify this test configuration and establish an environment in which logic design for satellites can be verified in the future.

A New Hardening Technique Against Radiation Faults in Asynchronous Digital Circuits Using Double Modular Redundancy (이중화 구조를 이용한 비동기 디지털 시스템의 방사선 고장 극복)

  • Kwak, Seong Woo;Yang, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2014
  • Asynchronous digital circuits working in military and space environments are often subject to the adverse effects of radiation faults. In this paper, we propose a new hardening technique against radiation faults. The considered digital system has the structure of DMR (Double Modular Redundancy), in which two sub-systems conduct the same work simultaneously. Based on the output feedback, the proposed scheme diagnoses occurrences of radiation faults and realizes immediate recovery to the normal behavior by overriding parts of memory bits of the faulty sub-system. As a case study, the proposed control scheme is applied to an asynchronous dual ring counter implemented in VHDL code.

MR Imaging of Radiation-Induced Lumbosacral Plexopathy, as a Rare Complication of Concomitant Chemo-Radiation for Cervical Cancer

  • Hwang, Eun Taeg;Son, Hye Min;Kim, Jin Young;Moon, Sung Min;Lee, Ho Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Radiation-induced lumbosacral plexopathy (RILSP) is an uncommon complication of pelvic radiotherapy that can result in different degrees of sensory and motor deficits. An age 59 female with cervical cancer, who had received combined chemotherapy and radiation therapy two years before, presented with bilaterally symmetric lower-extremity weakness and tingling sensation. The magnetic resonance imaging showed diffuse T2 bright signal intensity and mild enhancement along the bilateral lumbosacral plexus with no space-occupying masses. RILSP was diagnosed after the exclusion of malignant and inflammatory plexopathies.

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

Calculation of Solar radiation based on Cloud Data for Major cities of Korea (국내 주요도시의 운량데이터를 이용한 일사산출)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Park, So-Hee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.142-147
    • /
    • 2008
  • Limited fossil fuels and unstable energy supply are considered as one of the critical problems in architecture requiring large amounts of energy. In order to this challenge, environment-friendly architecture design is required. Especially, Application of solar energy as a clean energy source and one kind of renewable energy. Many sites however are mainly concentrated in the developed countries, and are scarcer within the developing world. Simple radiation estimation models using meteorologically observed input parameters are often used in the applications requiring rough estimations of solar radiation. In this paper, measurements of global solar radiation and cloud data hours in climatological locations in South Korea are used to develop an estimation in solar radiation. The results of measured data are compared with the results obtained from equations, internationally accepted correlations.

  • PDF

Prediction of Daily Solar Irradiation Based on Chaos Theory (혼돈이론을 이용한 일적산 일사량의 예측)

  • Cho, S. I.;Bae, Y. M.;Yun, J. I.;Park, E. W.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF