• Title/Summary/Keyword: Space information network

Search Result 1,264, Processing Time 0.028 seconds

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

Improvement of Time Synchronization of SpaceWire Network through Time-Code Extension (타임코드 확장을 통한 스페이스와이어 네트워크의 시각 동기화 성능 개선)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.724-730
    • /
    • 2017
  • SpaceWire invented for spacecrafts has Time-Code defined for time synchronization over SpaceWire network. A Time-Code suffers transmission delay of 14[bit-period] and jitter up to 10[bit-period] whenever it passes through a SpaceWire link, which is the primary cause of time synchronization error. This work presents a simple method to improve the time synchronization which uses two extended Time-Codes. Nodes on a SpaceWire network can find how much delay and jitter a received Time-Code has suffered while it passes through the network, and they can correct time synchronization error with this information. The proposed method was validated in a simulation environment developed based on OMNeT++. The simulation result showed that time synchronization error less than a few bit-periods can be achieved. The proposed method is cost effective and suitable for small-scale SpaceWire network systems.

A Genetic Algorithm Based Source Encoding Scheme for Distinguishing Incoming Signals in Large-scale Space-invariant Optical Networks

  • Hongki Sung;Yoonkeon Moon;Lee, Hagyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.151-157
    • /
    • 1998
  • Free-space optical interconnection networks can be classified into two types, space variant and space invariant, according to the degree of space variance. In terms of physical implementations, the degree of space variance can be interpreted as the degree of sharing beam steering optics among the nodes of a given network. This implies that all nodes in a totally space-invariant network can share a single beam steering optics to realize the given network topology, whereas, in a totally space variant network, each node requires a distinct beam steering optics. However, space invariant networks require mechanisms for distinguishing the origins of incoming signals detected at the node since several signals may arrive at the same time if the node degree of the network is greater than one. This paper presents a signal source encoding scheme for distinguishing incoming signals efficiently, in terms of the number of detectors at each node or the number of unique wavelengths. The proposed scheme is solved by developing a new parallel genetic algorithm called distributed asynchronous genetic algorithm (DAGA). Using the DAGA, we solved signal distinction schemes for various network sizes of several topologies such as hypercube, the mesh, and the de Brujin.

  • PDF

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Measurements of Green Space Ratio in Google Earth using Convolutional Neural Network (합성곱 신경망을 이용한 구글 어스에서의 녹지 비율 측정)

  • Youn, Yeo-Su;Kim, Kwang-Baek;Park, Hyun-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.349-354
    • /
    • 2020
  • The preliminary investigation to expand the green space requires a lot of cost and time. In this paper, we solve the problem by measuring the ratio of green space in a specific region through a convolutional neural network based the green space classification using Google Earth images. First, the proposed method collects various region images in Google Earth and learns them by using the convolutional neural network. The proposed method divides the image recursively to measure the green space ratio of the specific region, and it determines whether the divided image is green space using a trained convolutional neural network model, and then the green space ratio is calculated using the regions determined as the green space. Experimental results show that the proposed method shows high performance in measuring green space ratios in various regions.

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

SD-ICN: Toward Wide Area Deployable Software Defined Information Centric Networking

  • Xing, Changyou;Ding, Ke;Hu, Chao;Chen, Ming;Xu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2267-2285
    • /
    • 2016
  • Information Centric Networking that uses content name instead of IP address as routing identifier can handle challenges such as traffic explosion and user mobility, but it also suffers from scalability and incompatibility problems. In this paper by combining the concept of software defined networking and Internet end to end arguments, we propose a wide area deployable software defined information centric networking service model named SD-ICN. SD-ICN employs a dual space structure that separates edge service network and core transmission network. The enhanced SDN techniques are used in edge service network in order to implement intelligent data routing and caching, while traditional IP technique is reserved in core transmission network so as to provide wide area high speed data transmission. Besides, a distributed name resolution system based on the cooperation of different controllers is also presented. The prototype experiments in our campus network show that SD-ICN can be deployed in a scalable and incremental way with no modification of the core network, and can support typical communication modes such as multicast, mobility, multihoming, load balancing, and multipath data transmission effectively.

Analysis of transmission delay of timecode over SpaceWire network using OMNeT++ (OMNeT++을 이용한 스페이스와이어 네트워크의 타임코드 전송 지연 분석)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2022-2028
    • /
    • 2015
  • SpaceWire is a standard for high-speed links and networks between spacecraft components, which was invented for better, cheaper and faster on-board data handling in spacecraft. The standard defines timecode and its distribution which can be used for time synchronization among the nodes in a SpaceWire network. A timecode output from the time master which provides standard time over a SpaceWire network travels through links and routers to reach every nodes. While traveling, a timecode suffers from transmission delay and jitter which cause some difference in time synchronization among nodes. In this work, a simulator was developed using OMNeT++ to simulate the operation of a SpaceWire network and some analyses were performed on the transmission delay and jitter accompanied with a transmission of a timecode. The result will be used in the near future for the research of a precise time synchronization technique over a SpaceWire network.

Realtime Hardware Neural Networks using Interpolation Techniques of Information Data (정보데이터의 복원기법 응용한 실시간 하드웨어 신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.506-507
    • /
    • 2007
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed.

  • PDF

The Coming Cyber Society - Types of Multimedia Applications & Services in Japan -

  • Ichinose, Susumu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.1-3
    • /
    • 1998
  • The 21st century will see the formation of a“Cyber society”that, while separate form the real world, will cooperate with it, leading to the further expansion and development of world society. Cyber society allows the formation of virtual space through the connection of multiple computers in a network. In this virtual space, multiple users can communicate with each other and can collect and exchange information while moving about freely and engaging in activities. Three main technologies are vital to the construction of the Cyber society: platform technology for converting multimedia information to optical signals and performing digital processing and communication processing on such signals; communications network technology for transferring these signals from one point to another; and application technology for configuring the Cyber society that will be formed on this network. This paper describes platform technology and network technology with an emphasis on their relationship to application technology for configuring the Cyber society, and will also discuss InterSpace, one of the cyber society platform system of the Cyber society.

  • PDF