• 제목/요약/키워드: Space and astronomical telescope

검색결과 699건 처리시간 0.028초

FUTURE SPACE INFRARED TELESCOPE MISSION, SPICA

  • MATSUMOTO TOSHIO
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.89-91
    • /
    • 2005
  • SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an infrared astronomical satellite with a 3.5 m cooled telescope which is very powerful in mid- and far- infrared observations and makes complementary role to JWST and Herschel. SPICA will be launched at ambient temperature without any cryogen into the Sun-Earth L2 orbit and cooled down in space to 4.5 K with use of efficient radiative cooling and mechanical coolers. The present status of SPICA and the developments of the satellite system are reported.

Alignment of Schwarzchild-Chang Off-axis Telescope with a Shack-Hartmann Wavefront Sensor and Sensitivity Table Method

  • Lee, Sunwoo;Park, Woojin;Kim, Yunjong;Kim, Sanghyuk;Chang, Seunghyuk;Jeong, Byeongjoon;Kim, Geon Hee;Pak, Soojong
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.79.1-79.1
    • /
    • 2019
  • The Schwarzchild-Chang telescope is a confocal off-axis two mirror telescope with D = 50 mm, F = 100 mm and FOV = 8 ° × 8 °. Unlike common off-axis telescopes, the mirrors of the Schwarzchild-Chang telescope share their focal points to remove the linear astigmatism. In this poster, we show the alignment process of the Schwarzchild-Chang telescope with wavefront measurement and the sensitivity table method. Wavefront is measured using the Shack-Hartmann sensor, and Zernike polynomials are obtained from measured wavefront. Sensitivity table method is to calculate alignment errors from the Zernike coefficients. As a result, we evaluate tilt, decenter, and despace of each mirror of linear astigmatism-free con-focal off-axis system.

  • PDF

Automation of Kyung Hee Astronomical Observatory 76 cm Telescope

  • Byeon, Seoyeon;Ji, Tae-Geun;Lee, Hye-In;Lee, Sunwoo;Pak, Soojong;Im, Myungshin
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.67.3-68
    • /
    • 2018
  • We plan to automatize the operation of Kyung Hee Astronomical Observatory (KHAO) 76 cm Telescope by adapting KAOS30 (KHU Automatic Observing Software for McDonald 30 inch Telescope). The software is developed to improve the efficiency of the observation system for monitoring transients and variable sources. It has installed and operated at McDonald 30 inch telescope since 2017 August. KAOS76 (KHU Automatic Observing Software for KHAO 76 cm Telescope) consists of four packages: Telescope Control Package (TCP), Data Acquisition Package (DAP), Auto Focus Package (AFP), and Script Mode Package (SMP). Most of the packages can be configured by minimized modifications of the codes because it includes common libraries for FLI instruments and also ASCOM standard. TCP, DAP, and AFP control astronomical devices. SMP supports automatic observing in a script mode. TCP of KAOS76 can communicate with the TCS via ASCOM. Also, KAOS76 has an extra function to compensate the misalignment of the polar axis. In this poster, we show the current status of the observing system with KAOS76.

  • PDF

Maemi Dual Field Telescope System (MDFTS) : New survey facility of Kyung Hee Astronomical Observatory

  • Ahn, Hojae;Kim, Na Yeon;Kim, Dohoon;Pak, Soojong;Im, Myungshin
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.79.2-79.2
    • /
    • 2019
  • We introduce Maemi Dual Field Telescope System (MDFTS) which is newly installed at Kyung Hee Astronomical Observatory (KHAO). MDFTS consists of two telescope tubes (40cm and 10cm), whose observing fields are aligned with different field of view, 15' x 11' and 83' x 63' respectively. We present the specification of instruments (telescope, mount, camera, and filter system) and the observation environment of KHAO. We expect that MDFTS can be used for transient survey e.g. Intensive Monitoring Survey of Nearby Galaxies (IMSNG). Based on observations conducted so far, the limiting magnitude of 40cm telescope in B-band is B_lim ~ 16 mag at 5-σ detection with 150 seconds total integration time under dark and clear observing condition. Also the integrated observing software for MDFTS, KAOS40 is now under developing.

  • PDF

Performance evaluation of the 76 cm telescope at Kyung Hee Astronomical Observatory (KHAO)

  • Ji, Tae-Geun;Han, Jimin;Ahn, Hojae;Lee, Sumin;Kim, Dohoon;Kim, Kyung Tae;Im, Myungshin;Pak, Soojong
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.49.3-49.3
    • /
    • 2021
  • The 76 cm telescope in Kyung Hee Astronomical Observatory is participating in the small telescope network of the SomangNet project, which started in 2020. Since the installation of the telescope in 1992, the system configuration has been changed several times. The optical system of this telescope has a Ritchey-Chrétien configuration with 76 cm in diameter and the focal ratio is f/7. The mount is a single fork equatorial type and its control system is operated by TheSkyX software. We use a science camera with a 4k × 4k CCD and standard Johnson-Cousins UBVRI filters, which cover a field of view of 23.7 × 23.7 arcmin. We are also developing the Kyung Hee Automatic Observing Software for the 76 cm telescope (KAOS76) for efficient operations. In this work, we present the standard star calibration results, the current status of the system, and the expected science capabilities.

  • PDF

THE HST COSMOS PROJECT: CONTRIBUTION FROM THE SUBARU TELESCOPE

  • TANIGUCHI YOSHIAKI;SCOVILLE N. Z.;SANDERS D. B.;MOBASHER B.;AUSSEL H.;CAPAK P.;AJIKI M.;MURAYAMA T.;MIYAZAK S.;KOMIYAMA Y.;SHIOYA Y.;NAGAO T.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.187-190
    • /
    • 2005
  • The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.

Control software for temperature sensors in astronomical devices using GMT SDK 1.6.0

  • Kim, Changgon;Han, Jimin;Pi, Marti;Filgueira, Josema;Cox, Marianne;Roman, Alfonso;Molgo, Jordi;Schoenell, William;Kurkdjian, Pierre;Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.78.2-78.2
    • /
    • 2019
  • The temperature control of a scientific device is essential because extreme temperature conditions can cause hazard issues for the operation. We developed a software which can interact with the temperature sensor using the GMT SDK(Giant Magellan Telescope Software Development Kit) version 1.6.0. The temperature sensor interacts with the EtherCAT(Ethernet for Control Automation Technology) slave via the hardware adapter, sending and receiving data by a packet. The PDO(Process Data Object) and SDO(Service Data Object), which are the packet interacts with each EtherCAT slave, are defined on the TwinCAT program that enables the real-time control of the devices. The user can receive data from the device via grs(GMT Runtime System) tools and log service. Besides, we programmed the software to print an alert message on the log when the temperature condition changes to certain conditions.

  • PDF

SPACE SOLAR TELESCOPE

  • AI GUOXIANG
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.415-418
    • /
    • 1996
  • Space Solar Telescope (SST) is a space project for solar research, its main parameters are that total weight 2.0T, sun synchronous polar circular orbit, altitude of the orbit 730KM, 3 axis stabilized attitude system, power 1200W, telemetry of the downlink rate 30Mb/s, size $5{\ast}2{\ast}2\;M^3$, mission life 3 years. It is expected it will be launched in 2001 or later. The main objective is structure and evolution of solar vector magnetic field with very high spatial resolution. The payloads are consisted of 6 instruments: Main optical telescope with 1-M diameter and diffraction limited resolution 0.1 arc second, EUV imaging telescope with a bundle of four telescopes and 0.5 arc second resolution, spectrometric optical coronagraph, wide band spectrometer, H-alpha and white light telescope and solar and interplanetary radiospectrometer. An assessment study between China and Germany is under operation.

  • PDF