• Title/Summary/Keyword: Space Vehicle

Search Result 1,605, Processing Time 0.023 seconds

A Study on Omission and Suggestive Expressions in Motion Graphics (모션그래픽에서 생략과 암시적 표현에 관한 연구)

  • Youm, Dong-Cheol
    • Cartoon and Animation Studies
    • /
    • s.15
    • /
    • pp.251-265
    • /
    • 2009
  • Motion Graphics are a great effective vehicle for precise communication between customers in various media and formats. The important thing in the expression of Motion Graphics is to deliver messages clearly. Some current Motion Graphics which are focused on only attracting attention or sensational expressions more than narrative are evaluated lower. This study aims to utilize easy and positive Motion Graphics to deliver messages by applying their utility to production of Motion Graphics, omitting time spent on delivering effective messages and analyzing their suggestive expression methods because of the nature of producing Motion Graphics. This thesis is to study several theoretical backgrounds of omission and implicated expressions mentioned in the similar studies from the view of Motion Graphics, and to search applied examples and functional things using the expression methods in some film title sequence. Excellent Motion Graphics use planned omission and implicated methods rather than to use entire narratives or complicated descriptions. Especially, a film title sequence should focus on symbolic visual expressions. They are necessary to attract the audience's interest. To overcome the limitation of time and space deliver a huge amount of information quickly and powerfully, Motion Graphics should properly use omission of image and time and suggestive expressions through symbols and metaphors. Then they will have a role to level up their current values and discussions.

  • PDF

A Study on Development of Technology System for Deep-Sea Unmanned Underwater Robot of S. Korea analysed by the Application of Scenario Planning (한국형 수중로봇시스템의 기술개발연구 - 시나리오플래닝 적용으로 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2013
  • This study is about development of technology system for an advanced deep-sea unmanned underwater robot of S. Korea analysed by the application of scenario planning. It was developed a 6000m class next-generation deep-sea unmanned underwater vehicle(or robot, UUV) system, soonly ROV 'Hemire' and Depressor 'Henuvy' in 2006 at S. Korea and motion control, adaptive control algolithm, a work-space manipulator control algolithm, especially the underwater inertial-acoustic navigation system robust to initial errors and sensor failures. But there are remained matters on position tracking of the USBL, inertial-acoustic navigation system, attitude sensor, designed sonar sensors. So this study suggest the new idea for settle the matters and then this idea help the development of the underwater inertial-acoustic navigation system robust to initial errors and sensor failures, such as acoustic signal drop-out, by modifying the error covariance of the failed sonar signal when drop-out occurs. As a result, the future policy for deep-sea unmanned underwater robot of S. Korea is to further spur the development of new technology and more improvement of the technology level for deep-sea unmanned underwater robot system with indicator and imaginary wall as external device.

Solving Probability Constraint in Robust Optimization by Minimizing Percent Defective (불량률 최소화를 통한 강건 최적화의 확률제한조건 처리)

  • Lee, Kwang Ki;Park, Chan Kyoung;Kim, Geun Yeon;Lee, Kwon Hee;Han, Sang Wook;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.975-981
    • /
    • 2013
  • A robust optimization is only one of the ways to minimize the effects of variances in design variables on the objective functions at the preliminary design stage. To predict the variances and to formulate the probabilistic constraints are the most important procedures for the robust optimization formulation. Though several methods such as the process capability index and the six sigma technique were proposed for the prediction and formulation of the variances and probabilistic constraints, respectively, there are few attempts using a percent defective which has been widely applied in the quality control of the manufacturing process for probabilistic constraints. In this study, the robust optimization for a lower control arm of automobile vehicle was carried out, in which the design space showing the mean and variance sensitivity of weight and stress was explored before robust optimization for a lower control arm. The 2nd order Taylor expansion for calculating the standard deviation was used to improve the numerical accuracy for predicting the variances. Simplex algorithm which does not use the gradient information in optimization was used to convert constrained optimization into unconstrained one in robust optimization.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Satisfaction Evaluation for the Pedestrian Improvement of Street Spaces - Focused on the Commercial and Residential Areas in the First District of Administrative-Centered City - (가로공간 보행증진을 위한 보행만족도 평가 - 행정중심복합도시 1지구 상업·주거지역을 대상으로 -)

  • Lian, Teng;Choi, Jae-Hyuck;Lee, Shi-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.115-126
    • /
    • 2018
  • A new urban paradigm that moves from a vehicle-centric to pedestrian-centric culture should be considered to improve the quality of the pedestrian environments for women, children, senior citizens, and disabled persons as well as to promote community unification by providing general movement rights to everyone. This study was implemented to provide decent alternatives to improve street spaces. The street spaces around the Commercial and Residential Area No.1 located in the Administrative-Centered City, Sejong Special Autonomic City, were selected to analyze and define the status of the walkways and the street spaces. Satellite imagery and numerical maps were used to collect geographic data. Practical and actual surveys for the selected sites were performed to analyze the street status and the pedestrian status. Based on the all collected data, analysis results, and literature reviews, the questionnaire was made, and 315 inquiries qualified for analysis. The physical status of all four study sites was the highest level, Grade A, and green open spaces were relatively sufficient. As a result, the factors obtained from the factor analysis have an impact on the satisfaction of the pedestrian streets in the commercial area. The factors are as followed Design > Convenience > Roadside trees and rest areas > Safety > Safety protective facilities > Transportation and information facilities > Continuity > Basic state of road surfaces > Comfortability, and in the residential area: Transportation and information facilities > Basic state of road surfaces > Comfort > Convenience > Continuity > Design > Illumination and crime prevention facilities > Safety > Roadside trees and rest areas.

A Study on the Development of Facility Model for Safety Training Class in School (학교 내 안전체험교실의 시설모형 개발 연구)

  • Park, Sung-Chul;Ahn, Yoo-Jeong;Song, Byung-Joon;Cho, Jin-ll
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.19-33
    • /
    • 2017
  • The purpose of this study is to derive education programs for safety training class, create unit spaces and present components and methods of utilizing the spaces for the development of facilities models closely related to various policy, operation plan and facility construction projects promoted by related institutions such as the Ministry of Education, schools, architects and companies. This study is divided into five steps. First, we reviewed the literature related basic directions for safety education and facility plan, second, field survey included both field conditions such as spatial size and facility configuration and analysis of operating conditions like hours of operation and personnel. Base on literature review and field survey, it were used to analyze strengths and weaknesses of existing safety training classes, and five facility models was developed based on the Delphi method and expert participatory design. The result show that the facility models (drafts) of safety training class were developed as follows: (1)the facility model for traffic safety(pedestrian safety, vehicle safety, subway safety) (2)the facility model for first aid(emergency rescue, how to report) (3)the facility model for disaster safety(fire evacuation safety, life earthquake safety) (4)the facility model for elevator safety(elevator safety, escalator safety) (5)the facility model for drugs and violence safety (smoking drinking, sexual harassment safety, food safety) The safety training class can be composed by combining or separating each module according to affordable space size of each school.

Study on the B2X(Bicycle and Motorcycle-to-Everything) Safety Service in C-ITS (C-ITS환경의 자전거 및 이륜차 안전서비스 연구)

  • Kim, Jin-Tae;Kim, Joo-Young;Kim, Jun-Yong;Bae, Hyun-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.28-38
    • /
    • 2016
  • Cooperative-Intelligent Transport Systems (c-ITS) has emphasized a real-time traffic safety service in urgent situations among highway infrastructure and four-wheeled vehicles, while two-wheeled vehicles, e.g. bicycles and motorcycle, sharing highway space and endangering highway safety, have yet been out of its interest. This paper delivers the results of a study conducted to analyze the patterns of two-wheeled-vehicle traffic accidents experienced in the past, the last three years (2011~2013), and to propose the types of service enhancing the safety of the riders of those. It was found from the analysis of historical accident data that the side collision on a link section should be taken care of for further safety treatment, while the old female drivers need additional care to decrease their fatality rate. By combining the services proposed for bicycles and motorcycles, this paper proposes (1) eight different bicycle-to-everything (B2X) services which can be eventually provided in c-ITS and (2) three of those that would be available in the near future with the current communication technologies.

Development of Specifications and Design Criteria of Rest Area for Drowsy Drivers (고속도로 졸음쉼터 제원 산정 및 설계기준 정립에 관한 연구)

  • Oh, Seok Jin;Park, Je jin;Hong, Jung Pyo;Ha, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.397-407
    • /
    • 2017
  • This study investigated current status of rest area for drowsy drivers on the highways and drew the related issues to define specifications and design criteria regarding expressway rest area for drowsy drivers on the highways. Based on the investigation result, geometric structure specifications and improvement plans are suggested. The entry part of a rest area for drowsy drivers on the highways was divided into deceleration transition section, deceleration lane and entry connection road while the exit part was divided into exit connection road, acceleration lane and acceleration transition section. The optimum length was estimated by considering the main lane vehicle traveling speed, traveling speed at the beginning/end point of entry/exit connection roads, deceleration and acceleration. In addition, reasonable design criteria were suggested by dividing the parking section of rest area for drowsy drivers according to parking style and cross-section composition, and length of parking space and then considering the ratio of vehicles using rest area for drowsy drivers, the ratio of heavy vehicles, and the design speed within a rest area for drowsy drivers. It is believed that the suggested design criteria on rest area for drowsy drivers on the highways can be utilized in the future planning and maintenance of rest area for drowsy drivers. Additionally, the defined criteria on installing rest area for drowsy drivers on the highways will prevent traffic accidents in resting facilities and highways as well as improve usage and safety of them.

A Study on Signal Control Algorithms using Internal Metering for an Oversaturated Network (내부 미터링을 이용한 과포화 네트워크 신호제어 알고리즘 연구)

  • Song, Myeong-Gyun;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.185-196
    • /
    • 2007
  • The aim of this research is to develop a signal control algorithm using internal metering to minimize total delay that vehicles go through, in case a network is oversaturated. To calculate total delay on the network, the authors first detect vehicles' arrivals and departures in the network through the detecting system, and chase the vehicles' flow in the links with a platoon dispersion model. Following these, the authors calculate the queue length in all the inks of the network through the chase of vehicles, deduce the stopped time delay, and finally convert the stopped time delay to the approach delay with a time-space diagram. Based on this calculated delay, an algorithm that calculates the level of the internal metering necessary to minimize the deduced approach delay is suggested. To verify effectiveness of this suggested algorithm, the authors also conduct simulation with the micro-simulator VISSIM. The result of the simulation shows that the average delay per vehicle is 82.3 sec/veh and this delay is lower than COSMOS (89.9sec/veh) and TOD (99.1sec/veh). It is concluded that this new signal control algorithm suggested in this paper is more effective in controlling an oversaturated network.

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.