• Title/Summary/Keyword: Space Time Transmit Diversity

Search Result 119, Processing Time 0.023 seconds

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.

Performance Analysis of Quasi-orthogonal STC Using Adaptive Power Allocation Scheme (적응된 전력 할당 기법을 이용한 준직교코드의 성능 분석)

  • Kim Young-Hwan;Kim Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.72-78
    • /
    • 2006
  • It is impossible to provide full diversity and full rate simultaneously using more than two transmit antennas in transmit diversity system. To do this, simple interference cancellation scheme and transmit power allocation scheme have been proposed, recently. But the former has increased noise power and the latter has increased interference which is induced by other channel in fading channel. In this paper, we propose an adaptive transmit power allocation algorithm to minimize the estimation error in the channel environments which have different fading levels each other and to improve the system performance.

Performance Evaluation for Linear Space-time Coded MIMO-OFDM System considering Diversity-Spatial Multiplexing (다이버시티와 공간 다중화를 고려하여 선형 STBC를 사용한 OFDM 시스템 성능 분석)

  • 이해정;양청해;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.240-247
    • /
    • 2004
  • In order to transmit data at high speed in the wireless environment, OFDM is selected as the transmission method of various high-speed wireless communication system since it has the advantage to deal easily the serious selective frequency fading channel by the multiple path. We evaluate STBC-OFDM and linear STBC-OFDM combining with a class of recently proposed linear scalable space-time block codes and OFDM in MIMO channel environments, and demonstrate the performance for spatial multiplexing and diversity gain. The codes are able to use jointly transmit diversity in combination with spatial multiplexing, and achieve spatial and temporal diversity. Frequency diversity of frequency selective channels can be utilized by combining the linear STBC and OFDM. Simulation results are shown to demonstrate the better performance of proposed approach in comparison with STBC-OFDM.

Performance of Double Binary Turbo Code for Ultra Wide-Band Systems with Multiple-Antenna Scheme (다중 안테나 개념을 적용한 초광대역 무선통신 시스템에서 이중 이진 터보 부호 성능)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Lee, Chong-Hoon;Kang, Jeong-Jin;Kim, Seong-Kweon;Hwang, Sung-Ho;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2009
  • In this paper, the performance of double binary turbo code is analyzed and simulated in ultra wide-band (UWB) systems employing multiple-antenna scheme. We consider both pulse position modulation-time hopping (PPM-TH) and pulse amplitude modulation-direct sequence (PAM-DS) UWB systems. The space time block code (STBC) scheme is adopted as a transmit diversity method. Also, receive diversity scheme is applied. And double binary turbo code is applied to the UWB system.

  • PDF

Alternate Time-Switched Space-Frequency Block Coding Technique for OFDM Systems

  • Jung, Hyeok Koo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.287-289
    • /
    • 2012
  • This paper proposes an alternate time-switched space-frequency block coding transmission technique for orthogonal frequency division modulation systems. There are two antennas in the transmitter but it still has only a baseband and RF and a switch that alternates between the antennas at every symbol timing. Alternating transmit symbols result in zeros that make maximal ratio receive combining possible in the receiver. Simulation results show that it provides better performance than the traditional algorithm at the expense of one additional antenna.

An Antenna Selection and Switching System Robust to Spatially Correlated Channel (공간적 상관도가 존재하는 채널에 강인한 다중안테나 선택 및 스위칭 시스템)

  • 심세준;박승일;이학주;이충용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.55-61
    • /
    • 2004
  • This paper proposes an antenna selection and switching system between spatial multiplexing and diversity techniques. The proposed system overcomes spatial correlation by using antenna selection method and improve bit error performance with switching encoding nudes between a spatial multipexing encoder and a diversity encoder. Therefore, in a 4 transmit and 2 receive antenna system first, the proposed system selects 2 transmit antennas, and next, switches encoding modes between Space-Time Transmit Diversity and BLAST according to instantaneous channel information. Computer simulations showed that the proposed system improves about 2 or 3 ㏈ SNR in low correlated channel and about 3 ㏈ SNR in highly correlated channel rather than a 2 by 2 antenna switching system.

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

32×32 Full-Rate Massive MIMO Using Quasi-Orthogonal Space-Time Block Code (QOSTBC) (준직교 공간시간 블록부호를 적용한 32×32 전율 대규모 MIMO 시스템)

  • Winn, Khin Zar Chi;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.507-513
    • /
    • 2015
  • In this paper, we present the bit-error rate (BER) performance of quasi-orthogonal space-time block code (QOSTBC) massive multiple-input multiple-output (MIMO) system employing up to 32 transmit and receive antennas. The QOSTBC, due to its advantages in transmission rate and decoding complexity, is an important transmit diversity scheme for more than 2 transmit antennas. As massive MIMO implies very large number of antennas, practically at least more than 15 antennas, a different number of transmit and receive antennas (i.e. $2{\times}2$, $4{\times}4$, $8{\times}8$, $16{\times}16$ and $32{\times}32$) using QOSTBC for the massive MIMO system are considered. The BER performance of the massive MIMO with antennas up to $32{\times}32$ using BPSK modulation scheme is analyzed. Simulation results show that the full-rate massive MIMO systems with QOSTBC give a significant performance improvement due to increasing diversity effect, compared with previously considered massive MIMO systems.

Alternate Time-Switched Multiplexed Space-Time Block Coding technique for OFDM systems (OFDM 시스템에 적용가능한 교번 스위칭하는 다중화 시공간 블록 코딩 기법)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.136-141
    • /
    • 2016
  • This paper proposes an alternate time-switched multiplexed space-time block coding technique for orthogonal frequency division modulation systems. The traditional multiplexed space-time block coding technique can provide more data rate owing to multiple transmit and receive technique, which causes a lot of hardware burden. Alternate time-switched scheme of transmitting time-domain zeros can reduce this hardware burden by half with time-domain switches only. Simulation results show that alternate time-switched scheme has almost same performance with half of baseband and RF modules in comparison with a multiplexed space-time block coding for orthogonal frequency division modulation systems with twice repetitive transmission.

A scalar MSDD with multiple antenna reception of Differential Space-Time π/2-Shifted BPSK Modulation

  • Kim Jae-Hyung;Hwang Seung-Wook;Kim Jung-Keun;Kim Yong-Jae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the issue of blind detection of Alamouti-type differential space-time (ST) ${\pi}/2$-shifted BPSK modulation in static Rayleigh fading channels is considered. We introduce a novel transformation to the received signal from each receiver antenna such that this binary ST modulation, which has a second-order transmit-diversity, is equivalent to QPSK modulation with second-order receive-diversity. The pre-detection combining of the result of transformation allows us to apply a low complexity detection technique specifically designed for receive-diversity, namely, scalar multiple-symbol differential detection (MSDD). With receiver complexity proportional to the observation window length, our receiver can achieve the performance 1.5dB better than that of conventional differential detection ST and 0.5dB worse than that qf a coherent maximum ratio combining receiver (with differential decoding) approximately.