• Title/Summary/Keyword: Space Segment

Search Result 369, Processing Time 0.021 seconds

Mechanical behaviour of rib-reinforced precast tunnel liner according to variable rib-reinforcement shapes (프리캐스트 터널 Liner의 리브보강 형상변화에 따른 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Seong-Won;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.265-275
    • /
    • 2009
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast rut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. Therefore, a technical problem that can provide a response similar to the actual filling conditions is analyzed by the finite element analyses, moreover, the mechanical behaviour of developed rib-reinforced precast tunnel liner through a large-sized model test will be investigated. The ultimate load of the developed rib-reinforced precast tunnel liner shows a 3% reduction compared to existing rib-reinforced precast tunnel liner, especially, the section of rib-reinforcement decreased to 55% compared to it of existing. Therefore, the stability of tunnel structure can be significantly improved through the developed rib-reinforced precast segment.

A study on failure probability characteristic based on the reliability analysis according to the variation of boundary conditions (신뢰성 기반 쉴드터널의 경계조건 변화에 따른 파괴확률 특성에 관한 연구)

  • Gyu-Phil Lee;Young-Bin Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.447-458
    • /
    • 2023
  • In this study, a comparison model considering the stochastic characteristics of the load and member resistance of the shield tunnel segment lining as well as the variability of the boundary condition was selected and reliability analysis was performed, and the adequacy of the limit state design was analyzed by calculating the probability of failure and reviewing the structural safety. For the analysis considering the probability characteristics of these ground constants, the ground spring coefficient was considered as the mean value by calculating the quantitative value by applying the Muirwood formula, and the coefficient of variation was selected based on the existing research data to review the models according to the change of ground boundary conditions. Through the structural analysis of these models and the reliability analysis using MCS technique, the failure probability and reliability index were calculated to examine the changes in the failure probability due to changes in ground boundary conditions.

The Three Dimensional Analysis of the Upper Body's Segments of the Elderly during Walking (보행 시 노인의 상체 움직임에 대한 3차원적 분석)

  • Kim, Hee-Su;Yoon, Hee-Joong;Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.1-15
    • /
    • 2004
  • The purpose of this study was to investigate the kinematic variables of the upper part of the body for 8 elderly men during walking. For this study, kinematic data were collected using a six-camera (240Hz) Qualisys ProReflex system. The room coordinate system was right-handed and fixed in space, with righted orthogonal segment coordinate systems defined for the head, trunk, and pelvis. Based on a rigid body model, reflective marker triads were attached on the 3 segments. Three-dimensional Cartesian coordinates for each marker were determined at the time of recording using a nonlinear transformation(NLT) technique with ProReflex software (Qualisys, Inc.). Coordinate data were low-pass filtered using a fourth-order Butterworth with cutoff frequency of 6Hz. Three-dimensional angles of the head, trunk, and pelvis segment were determined using a Cardan method. On the basis of each segment angle, angle-angle plot used to estimated the movement coordinations between segments. The conclusions were as follows; (1) During the support phase of walking, the elderly people generally kept their, head the flexional and abductional posture. Particularly, the elderly displayed little internal/external rotation. (2) The elderly people showed extensional and external rotation postures in the trunk movement. Particularly, It showed the change from adduction into abduction at the heel contact event of the stance phase. (3) The elderly people showed almost same pelvis movement from the flexion into extension, from the abduction into adduction, and from internal rotation into external rotation at the mid stance and toe off of the stance phase.

A Review on the Mechanism of Human Postural Control (인간의 자세조절 메커니즘에 대한 연구)

  • Lee, Dong-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.45-61
    • /
    • 2005
  • Stance is defined as any state in which the total mass of the body is supported by the feet. In order to maintain stance, the sum of gravito-inertial forces acting on the body must be registered by equal and opposite forces at the region of contact between the organism and the support surface. Balance is controlled by applying forces to the surface of support so as to maintain the body's center of mass vertically above the feet. for a muIti-segment organism, there can be a variety of ways in which balance can be controlled, since movements of different body segments can have similar effects on the control of balance. In general, the organism tends to have a body configuration that is aligned with gravito-inertial force when there are no external forces acting on it. If any segments of the body are not aligned with gravito-inertial force vector, a torque on that segment would tend to move the body's center of mass. The maintenance of postural stability is accomplished in humans by a complex neural control system. This requires organizing integrating and acting upon visual, vestibular, and somatosensory input, providing orientation information to the postural control system. The information necessary to control and coordinate movement is provided by the visual sense of eye position with respect to the surrounding surface layout, the vestibular sense of head orientation in the gravito-inertial space, and the somatic sense of body segment position relative to one another and to the support surface. In this study, perception and action capability was examined from various points of view. The underlying assumption of the study was that the change of postural configuration could be effected by organism, environment and task goal.

Long-term Effects on the Cervical Spine after Anterior Locking Plate Fixation (경추 전방 잠금식 금속판이 장기적으로 경추에 미치는 영향)

  • Kim, Keun Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.4
    • /
    • pp.493-500
    • /
    • 2001
  • Objective : Anterior cervical locking plates are the devices for achieving anterior cervical spinal fusion. This study was conducted to evaluate the locking plate system regarding its long-term advantages and disadvantages in the view of interbody fusion rate, hardware-related failures, vertebral change close to the fusion segment and postoperative complications. Method : Eight-six patients, operated from Jan., 1996 to Jun. 1998, were followed-up for more than two years. All of the cases were fused with iliac bone graft and ORION locking plate(Sofamor Danek USA, Inc., Memphis, TN) fixation. The patients were discharged or transferred to rehabilitation department 2-7 days after operation. A comprehensive evaluation of the interbody fusion state, instrument failure, vertebral change and postoperative complications were made by direct interview and cervical flexion-extension lateral plain films. Results : There were 55 male and 31 female with a mean age of 45 years(18-75 years). The mean follow-up period was 29 months(24-43 months). Various disorders that were operated were 40 cervical discs, 6 cervical stenosis including OPLL, 2 infections, and 38 traumas. Fusion level was single in 59 cases, two levels of each disc space in 15 cases, and two levels after one corpectomy in 12 cases. There was no instrument failure. Pseudoarthrosis was observed in two cases(2%) without radiological instability. The other patients(98%) showed complete cervical fusion with stable instrument. Mild settling of interbody graft with upward migration of screws was found in 12 cases(14%). Anterior bony growth at the upper segment was found in 5 cases(6%). Postoperative foreign body sensation or dysphagia was observed in 12 cases(4%), and disappeared within one month in 7 cases and within six months in 4 cases. One patient complained for more than six months and required reoperation to remove paraesophageal granulation tissue. Conclusion : The results show that Orion cervical locking plate has some disadvantages of upward migration of screws, anterior bony growth at the upper segment, or possibility of esophageal compression even though it has advantages of high interbody fusion rate or low instrument failure. Author believe that anterior cervical locking plate in the future should be thinner, and should have short end from the screw hole, and movable screw with adequate stability.

  • PDF

Biomechanical Study of Lumbar Spinal Arthroplasty with a Semi-Constrained Artificial Disc (Activ L) in the Human Cadaveric Spine

  • Ha, Sung-Kon;Kim, Se-Hoon;Kim, Daniel H.;Park, Jung-Yul;Lim, Dong-Jun;Lee, Sang-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.3
    • /
    • pp.169-175
    • /
    • 2009
  • Objective : The goal of this study was to evaluate the biomechanical features of human cadaveric spines implanted with the Activ L prosthesis. Methods : Five cadaveric human lumbosacral spines (L2-S2) were tested for different motion modes, i.e. extension and flexion, right and left lateral bending and rotation. Baseline measurements of the range of motion (ROM), disc pressure (DP), and facet strain (FS) were performed in six modes of motion by applying loads up to 8 Nm, with a loading rate of 0.3 Nm/second. A constant 400 N axial follower preload was applied throughout the loading. After the Activ L was implanted at the L4-L5 disc space, measurements were repeated in the same manner. Results : The Activ L arthroplasty showed statistically significant decrease of ROM during rotation, increase of ROM during flexion and lateral bending at the operative segment and increase of ROM at the inferior segment during flexion. The DP of the superior disc of the operative site was comparable to those of intact spine and the DP of the inferior disc decreased in all motion modes, but these were not statistically significant. For FS, statistically significant decrease was detected at the operative facet during flexion and at the inferior facet during rotation. Conclusion : In vitro physiologic preload setting, the Activ L arthroplasty showed less restoration of ROM at the operative and adjacent levels as compared with intact spine. However, results of this study revealed that there are several possible theoretical useful results to reduce the incidence of adjacent segment disease.

Surgical and Orthognathic Treatment of Skeletal Class III Featuring Severe Transversal and Sagittal Discrepancy: A Case Report (심한 상하악 치열궁 부조화 환자의 수술적 해결: 증례보고)

  • Ryu, Kyung-Sun;Lee, Baek-Soo;Kim, Yeo-Gab;Kwon, Yong-Dae;Choi, Byung-Joon;Ohe, Joo-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2013
  • Multiple segment osteotomy orthognathic surgery serves to combine the total or segmental maxillary and mandibular correction of the dentofacial deformities with concurrent procedures to provide immediate repositioning to the dento-osseous elements. In addition, splitting the palate may often be necessary to correct a functionally poor relationship of the maxilla to the mandible or the facial skeleton by realigning the maxillary arch. In this case, the discrepancy in a bimaxillary horizontal relationship and the space between the 2nd premolar and 2nd molar was retained after lengthy preoperative orthodontic treatment. However, we could correct these dento-osseous discrepancies immediately by performing midpalatal expansion, anterior segmental osteotomy and symphyseal osteotomy with bimaxillary osteotomies. If the blood supply to each segment segments was maintained and primary closure of the operation site was feasible, multiple segment osteotomy was considered as a very effective technique for treating dentofacial deformities in vertical, transverse, and sagittal dimensions with differential repositioning of all segments.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

Eire-induced Damage to Shield TBM Concrete Segment (터널 화재로 인한 콘크리트 세그먼트의 손상특성 규명)

  • Choi Soon-Wook;Chang Soo-Ho;Lee Gyu-Phil;Bae Gyu-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • Fire in underground space may induce severe structural damage as well as heavy casualties. To protect underground structure and passengers from fire, it is very essential to characterize fire-induced damage on construction materials of underground structures. In this study, the high-temperature furnace was manufactured to evaluate fire-induced damage on underground structure materials. Especially, this study aimed at the evaluation of fire-induced damage on the shield TBM concrete segment. In the fire tests, furnace temperature was set to reach 1,200 degrees at five minutes after Ignition. The temperature of 1,200 degrees was kept during one hour, and the fire was extinguished after two hours elapsed. From the temperature measurement by thermocouples embedded in test specimens, the spatting was estimated to reach approximately 20 cm from the surface exposed to fire. After the fire tests, the alteration of physico-mechanical properties and microstructures of concrete segment was investigated from core specimens. The results showed that apart from spatting, the deterioration depth of the remaining concrete material amounted to approximately 10 cm from the spatting surface.

Development Plan for the GMT Fast-steering Secondary Mirror

  • Lee, Sugnho;Han, Jeong-Yeol;Park, Chan;Jeong, Ueejeong;Yoon, Yang-noh;Song, Je Heon;Moon, Bongkon;Park, Byeong-Gon;Cho, Myung K.;Dribusch, Christoph;Park, Won Hyun;Jun, Youra;Yang, Ho-Soon;Moon, Il-Kwon;Oh, Chang Jin;Kim, Ho-Sang;Lee, Kyoung-Don;Bernier, Robert;Gardner, Paul;Alongi, Chris;Rakich, Andrew;Dettmann, Lee;Rosenthal, Wylie
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.3-67
    • /
    • 2016
  • The Giant Magellan Telescope (GMT) will feature two interchangeable Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, KASI conducted a Phase 0 study to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The GMTO-KASI team matured this plan via an internal review in May 2016 and the revised plan was further assessed by an external review in June 2016. In this poster, we present the technical aspects of the FSM development plan.

  • PDF