• Title/Summary/Keyword: Space Rocket

Search Result 492, Processing Time 0.021 seconds

Performance Design of TCO System of the Solid Rocket Motor (고체 로켓모터의 TCO 성능 설계)

  • Hwang, Yong-Seok;Yun, Myeong-Won;O, Jong-Yun;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.101-106
    • /
    • 2006
  • This paper describes performance design of a solid rocket motor on which thrust cut-off system is installed, and evaluates performance of a rocket motor according to a size of TCO ports. TCO system installed on motors was made to carry out firing tests, and the trend of thrust due to various sizes of TCO port was analyzed to find the existence of the port size for maximum reversal thrust. Conservation equations were used to design performance of motors and to analyze test results. This technique for performance design will be usefully applied to the design of similar TCO systems.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

Flow Analysis of the Oxidizer Manifold for a Liquid Rocket Combustor using OpenFOAM (OpenFOAM을 이용한 액체 로켓 연소기의 산화제 매니폴드 내 유동 해석)

  • Joh, Mi-Ok;Han, Sang-Hoon;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.781-788
    • /
    • 2012
  • Flow in the oxidizer manifold of a liquid rocket combustor has been analysed using an open source CFD toolbox, OpenFOAM. The applicability of OpenFOAM to the problems with complex geometries involving porous media zones for simulating the pressure drop induced by the injectors has been evaluated by performing turbulent, incompressible steady-state flow analysis. The usefulness and applicable area of the OpenFOAM as a design evaluation and analysis tool will be confirmed and enlarged by further evaluation with various computational cases representing major physical phenomena in rocket combustion devices.

Evaluation on the Characteristics of Liquefied Natural Gas as a Fuel of Liquid Rocket Engine (액체로켓엔진 연료로서 액화천연가스 특성 평가)

  • Han, Poong-Gyoo;NamKoung, Hyuck-Joon;Kim, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • As a rocket propellent of hydrocarbon fuels, the characteristics of liquefied natural gas was evaluated with the viewpoint of the constituents and content, the cooling performance as a coolant, and characteristic velocity and specific impulse as parameters of the engine performance. Content of methane was a principal factor to determine the characteristics as a rocket propellant and more than 90% of it was needed as a fuel and coolant in the regenerative cooled liquid rocket engine. Some constituents of the liquefied natural gas can be frozen by the pre-cooling of the pipe lines, therefore they can be a factor disturbing the normal working of engine. In case the content of methane is around 90% in the liquefied natural gas, a normalized stoichiometric O/F mixture ratio of 0.75 is suggested for a nominal operation condition to get the maximum specific impulse and characteristic velocity.

A Study on the Analysis of Pogo Instability and Its Suppression of Liquid Propellant Rocket (액체추진 로켓의 포고 불안정성 해석과 제어에 관한 연구)

  • Jang, Hong Seok;Yeon, Jeong Heum;Yun, Seong Gi;Jeong, Tae Gyu;Jang, Yeong Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. Rocket structure is modeled using FEM. Form the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed. The stability in obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability in carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

System Trade Study of the Air-launching Rocket Using Sequential Optimization Technique (순차적 최적화를 이용한 공중발사 로켓 시스템 대안 분석)

  • Choi, Young-Chang;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.41-47
    • /
    • 2005
  • Conceptual design process is defined for the air-launching rocket by including analysis modules like mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. As a result of the conceptual design, the supersonic(M=1.5) air-launching rocket with hybrid engine for first stage propulsion system is designed. For the best system alternative selection, trade study for the 1st stage engine type and launching speeds using sequential optimization and confirming feasibility of baseline air-launching rocket has been performed. As a result of trade study, all alternatives are competitive in total weight and show only small difference in total weight per unit payload weight. Therefore, it is confirmed that the baseline air-launching rocket which has advantage in system safety especially in supersonic launching is feasible.

Thermochemical Performance Analysis of Liquid Rocket Nozzle (액체로켓 노즐의 열화학적 성능 해석)

  • Choe,Jeong-Yeol;Choe,Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.85-96
    • /
    • 2003
  • For a design of rocket engine nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be used as an efficient design tool for predicting maximum thermodynamic performance of the nozzle. 10 this study, a chemical equilibrium flow analysis code was developed for the design of hydrocarbon fueled rocket engines. 10 oder to understand the thermochemical characteristics occurring in a nozzle through the expansion process, such as recombination of chemical components and the accompanying energy recovery, chemical equilibrium flow analysis was carried out for the KSR-III rocket engine nozzles together with frozen flow and non-equilibrium flow analyses. The performance evaluation based on the present KSR-III nozzle flow analyses has provided an understanding of the thermochemical process in the nozzle and additionally, it has confirmed that the newly designed nozzle shape modified to have a reduced exit area ratio is an adequate design for obtaining an increased ground thrust.

Liquid Hydrogen/Liquid Oxygen Rocket Engine Technology (액체수소/액체산소 로켓엔진 기술 검토)

  • Cho, Nam-Kyung;Park, Soon-Young;Kim, Seong-Han;Han, Yeong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.47-59
    • /
    • 2022
  • Liquid hydrogen/liquid oxygen rocket engines with highest specific impulse have been developed since the 1950s and used until now to maximize the capability of space launch vehicles. Domestic liquid hydrogen infrastructures for the production, transportation and distribution are being expanded at world-class level with the rise of hydrogen economy, which is a great opportunity for the performance enhancement for indigenous space launch vehicles. In this paper, feasibility of applying liquid hydrogen as a propellant is investigated in various aspects. The status of domestic liquid hydrogen infrastructure, the technologies required for liquid hydrogen engines, and operational aspects for safe handling of hydrogen are reviewed. In addition, test facilities for developing hydrogen engines are introduced briefly.

An introduction to present Research and Development condition about Solid Rocket Motor for Space Launch Vehicle (우주발사체용 고체 추진기관 개발현황 소개)

  • Kwon, Tae-Hoon;Shim, Myung-Sik;Song, Jong-Kwon;Lee, Won-Bok;Choi, Seong-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.623-626
    • /
    • 2009
  • Hanwha Corporation Daejeon Plant have developed apogee Kick Motor of KSLV-I that is the first among nation space launch vehicle for five years from 2003. Now, we are joining in KSLV-II(Korea Space Launch Vehicle-II) project and developing Pyro starter which is turbo pump for the first start-up of liquid propulsion supply.

  • PDF