• Title/Summary/Keyword: Space Power

Search Result 3,262, Processing Time 0.033 seconds

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Influence of Electrical Aging on Space Charge Dynamics of Oil-Impregnated Paper Insulation under AC-DC Combined Voltages

  • Wang, Yan;Li, Jian;Wu, Sicheng;Sun, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1512-1519
    • /
    • 2013
  • Oil-impregnated paper is a major type of insulation used in oil-filled converter transformers for both traditional and new energy systems. This paper presents and analyzes the results of the experiment conducted on the electrical aging of oil-impregnated paper under AC-DC combined voltages using the pulsed electro-acoustic (PEA) technique. The formation and dynamics of space charge affected the performance of insulation material. The electrical aged oil-paper insulation was obtained through electrical aged experiments under the voltages. Based on the PEA technique, measurements were carried out when the oil-paper insulation system was subjected to different stressing and aging times. The space charge dynamics in the bulk of the oil-paper insulation system with different aging times were measured and analyzed. Characteristic parameters such as the total charge injection amount, the total charges of fast moving and slow moving, and the distortion factor of electric field were calculated and discussed. Results show that the longer electrical aging time, the more charges trapped in the bulk of aging sample. It leads to larger distortion factor of electric field in the bulk of aging samples and accelerate degradation of oil-paper insulation under AC-DC combined voltages.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF

A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV (소형 연료전지 무인기의 전기추진시스템용 전력원 모델링 및 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Kim, Sung-Yug;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.959-965
    • /
    • 2011
  • A modeling and power simulation of a small UAV's electric propulsion systems is described. Each power source is modeled and simulated in Matlab/Simulink and it is compared flight test data during 4 hr 30 min with simulation results about 200 W electric propulsion system using fuel cell and battery as a main power sources. In result, it is properly simulated performance and dynamic characteristic of each electric power source. Through this, it is revealed that the simulation is available as a means of predicting power characteristic variation for electric propulsion systems of different class.

High Reliability Proto-type Auxiliary Power Supply Development for Satellite (위성용 고 신뢰성 Proto-type 보조전원 공급기 개발)

  • Choo, Won-Gyo;Kim, Hyun-Gu;Woo, Hyung-Je;Koo, Ja-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.94-98
    • /
    • 2010
  • The auxiliary power supply for satellite should make the power safe and support it for subsystems during its operational lifetime. Several contstraints should be required to get high reliability. In this paper, the auxiliary power supply was satisifed and designed to be satisified with some contstraints. Control circuits for the auxiliary power supply used majority voter circuits to remove the single point failure. To verify majority voter circuits, proto-type auxiliary power supply was manufactured and tested.

Design of Buck Converter Controller in a Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 제어기 설계)

  • Park, Bong-Hee;Jeong, Seung-Whan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Generally, buck converter controller is designed to control the output voltage of the converter. However, design of the controller in a photovoltaic power conditioning system is different from theoretical design guideline. The controller in a photovoltaic power conditioning system controls the input voltage of the converter (the output voltage of the solar cell) to meet a maximum power point tracking (MPPT) performance. In this study, a new model for buck converter used in a photovoltaic power conditioning system is proposed, which is linearized after state-space averaging in each period. Also, mathematical expression of the modeled buck converter is interpreted separately as small and large signals; therefore its appropriateness is measured to design linear voltage and current controller.

A Study on Design and Verification of Power Monitoring Unit for Unmanned Aerial Vehicle (무인항공기용 전원모니터링장치 설계 및 검증에 관한 연구)

  • Woo, Hee-Chae;Kim, Young-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • This paper describes a Power Monitoring Unit (PMU) for Unmanned Aerial Vehicle (UAV) electrical system, It is designed for the PMU which performs data sensing of generator, transformer rectifier unit (TRU), battery and gear box installed in UAV and operate power ON/OFF devices of mission equipment. The PMU measures the voltage and current for the aircraft power source (generators, transformer rectifier unit and battery), measures the pressure and temperature of the gearbox, and performs the mission equipment power command received from the mission computer. The PMU was designed to meet the requirements of the UAV, and was performed through structure/thermal analysis, environmental test, EMI test and ground/flight tests.

POWER SPECTRUM ANALYSIS OF THE OMC1 IMAGE AT 1.1MM WAVELENGTH

  • Youn, So-Young;Kim, Sung-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • We present a 1.1mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers, that was in use at the James Clerk Maxwell Telescope (JCMT). These AzTEC observations reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and $850{\mu}m$. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum, which provides the distribution of the length scale of the structures, is determined. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. The present analysis reveals that the power spectrum steepens at relatively smaller scales. At larger scales, the spectrum flattens and the power law becomes shallower. The power spectra of the 1.1mm emission show clear deviations from a single power law. We find that at least three components of power law might be fitted to the calculated power spectrum of the 1.1mm emission. The slope of the best fit power law, ${\gamma}{\approx}-2.7$ is similar to those values found in numerical simulations. The effect of beam size and the noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law changes significantly at higher spatial frequency as the beam size increases.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.159-167
    • /
    • 2014
  • Solar variability is widely known to affect the interplanetary space and in turn the Earth's electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, $B_X$, $B_Y$, $B_Z$. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1) Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2) The peaks in the power spectrum of $B_Z$ appear to be split due to an unknown agent. (3) For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4) Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth's space environment is not subject to the shadow of the inner planets as suggested earlier.