• Title/Summary/Keyword: Space Optics Alignment

Search Result 33, Processing Time 0.018 seconds

Design of the Active Optical Compensation Movements for Image Stabilization of Small Satellite (소형 위성 영상안정화를 위한 능동형 광학 보정장치 설계)

  • Hwang, Jai Hyuk;Yang, Ji Youn;Park, Jean Ho;Jo, Jeong Bin;Kang, Myoung Soo;Bae, Jae Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.472-478
    • /
    • 2015
  • This paper describes the design of the active optical compensation movements(at focal plane, secondary mirror) for the image stabilization of a small satellite camera. The movements can correct optical misalignment on-line and directly compensate vibration disturbances in the focal plane. Since the devices are installed inside the space camera, it has an remarkable advantage to deal with the structural deformation of a space camera effectively. In this paper, the requirements of the active optical compensation movements for 1m GSD small satellite camera have been analyzed. Based on the established requirements, the design of the active compensation movements have been conducted. The designed active optical compensation system can control 5 axes movements independently to compensate micro-vibration disturbances in the focal plane and to refocus the optical misaligned satellite camera.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Compact Infrared/Visible Laser Transmitter Featuring an Extended Detectable Trajectory

  • Kim, Haeng-In;Lee, Hong-Shik;Lee, Sang-Shin
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.331-335
    • /
    • 2012
  • A miniaturized laser beam transmitter, in which a visible laser module at ${\lambda}$=650 nm is precisely stacked upon an infrared (IR) module at ${\lambda}$=905 nm, has been proposed and constructed to provide an IR collimated beam in conjunction with a collinear monitoring visible beam. In particular, the IR beam is selectively dispersed through a perforated sheet diffuser, so as to create a rapidly diverging close-range beam in addition to a highly defined long-range beam simultaneously. The complementary close-range beam plays a role in mitigating the blind region in the vicinity of the transmitter, which is inevitably missed by the main long-range beam, thereby uniformly extending the transmitter's effective trajectory that is sensed by a receiver. The proposed transmitter was designed through numerical simulations and then fabricated by incorporating a diffuser sheet, perforated with an aperture of 2 mm. For the manufactured transmitter, the IR long-range beam was observed to have divergences of ~2.3 and 1.6 mrad in the fast and slow axes, respectively, while the short-range beam yielded a divergence of ~24 mrad. The angular alignment between the long-range IR and visible beams was as accurate as ~0.5 mrad. According to an outdoor feasibility test involving a receiver, the combination of the IR long- and short-range beams was proven to achieve a nearly uniform trajectory over a distance ranging up to ~600 m, with an average detectable cross-section of ${\sim}60{\times}80cm^2$.