• Title/Summary/Keyword: Soyang River basin

Search Result 35, Processing Time 0.025 seconds

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

A Stochastic Analysis of the Water Quality on the Basin of Soyang River with Discharge Variation (유량변동에 따른 소양강유역 수질의 통계학적 해석)

  • Choi, Han-Kyu;Baek, Kyung-Won;Choi, Yong-Mook;Choi, Jin-Woo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.233-240
    • /
    • 2001
  • This research was conducted with the aim of efficiently managing large scale of rivers such like Songyang-river through predicting water quality change with analyzing the characteristics of the flowing in nutrients and pollutants. The main result will be used as basic data for effectively operating reservoirs through controling water quality and quantity. The relationship between quantity of flow and water quality was analyzed and pollution loading into the basin was estimated. Three areas of Soyang-river upstream and one area of Suip-cheon in Yanggu-gun were selected as research sites. Flow and water quality were measured simultaneously. The relation between quantity of discharge and pollution concentration and between quantity of discharge and pollution loading were analyzed by statistical method, respectively. We provided a rating curve through measuring quantity of discharge(collecting quantity of discharge) and pollutograph and pollution loading curve through water quality data. Also, we analyzed the correlation between quantity of discharge per unit area and pollution loading per unit area in each basin. As resurt of this research, Buk-cheon spot revealed an excellent first grade water quality for the items including $BOD_5$, DO, and SS. The correlation coefficient between Buk-cheon spot's quantity of discharge and pollution loading was 0.896~0.996, showing the validity of analysis applying correlation curve formula of quantity of discharge and pollution loading in the same spot. Also, pollution loading per unit area of the items including $BOD_5$, COD, DO, SS, T-N, T-P increased as the area of basins get increased following the sequence of Buk-cheon, Suip-cheon, Naelin-cheon spots.

  • PDF

Analyzing the Effect of an Extreme Turbidity Flow Event on the Dam Reservoirs in North Han River Basin (북한강 수계 대규모 탁수사상 발생에 의한 댐 저수지의 탁수 영향 분석)

  • Park, Hyung-Seok;Chung, Se-Woong;Choung, Sun-a
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.282-290
    • /
    • 2017
  • A long-term resuspension of small particles, called persistent turbidity, is one of the most important water quality concerns in the dam reservoirs system located in North Han River. Persistent turbidity may incur aesthetic nuisance and harmful effect on the ecosystem health, in addition to elevated water treatment costs for the drinking water supply to the Seoul metropolitan area. These sufferings have been more intensified as the strength and frequency of rainfall events increase by climate change in the basin. This study was to analyze the effect of an extreme turbidity flow event that occurred in 2006 on the serial reservoirs system (Soyang-Uiam-Cheongpyung-Paldang) in North Han River. The CE-QUAL-W2 model was set up and calibrated for the river and reservoirs system using the field data obtained in 2006 and 2007. The results showed that Soyang Reservoir released turbid water, which was classified as the TSS concentration is greater than 25 mg/L, for 334 days with peak TSS of 264.1 mg/L after the extreme flood event (592.7 mm) occurred between July 10 and 18 of 2006. The turbid water departed from Soyang Reservoir reached at the most downstream Paldang Reservoir after about 20 days and sustained for 41 days, which was validated with water treatment plant data. Since the released water from Soyang Reservoir had low water temperature and high TSS, an underflow formed in the downstream reservoirs and vertically mixed at Paldang Reservoir due to dilution by the sufficient inflow from South Han River.

Simulation of Monthly Streamflow for the Soyang Basin Using Water And Snow balance MODeling System (융설을 고려한 물수지 모형을 이용한 소양강 댐 상류 유역의 월 유출량 산정)

  • Kim, Byung Sik;Jang, Dae Won;Seoh, Byung Ha;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study describes the WASMOD, water balance model which can consider the snowmelting. The pilot study basin is the Soyang River basin with outlet at Soyang Dam Site and compute long-term monthly streamflow, The advantage of the WASMOD is that the input data is simple and the user can operate easily. To optimize for the parameters of the model, the WASMOD used VA05A of automatic fitting technique. The observed and simulated monthly streamflow hydrographs were compared. The model performance on corrleation coefficient between the observed and the simulated streamflow for the verification periods was above 0.89. It was shown that the WASMOD reproduces the observed monthly streamflow hydrographs very well. This evidence suggests that the WASMOD might be appropriate for the simulation of monthly streamflow

  • PDF

A Feasibility Study of TOPMODEL for a Flood Forecasting Model on a Single Watershed (TOPMODEL의 단일유역 홍수예보능에 관한 연구)

  • Bae, Deok-Hyo;Kim, Jin-Hun;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The objective of this study is to test the flood forecasting capability of TOPMODEL on a single watershed in Korea. The selected study area is the Soyang River basin with outlet at Soyang Dam site. The three daily hydrographs and the three hourly flood events during 1990~1996 are selected for model calibrations and performance tests. The model parameters are estimated on 1990 daily event by manual fitting technique and the effects of topographic index distribution to river flow simulations are investigated on the study area. The model performance on correlation coefficient between the observed and the simulated flows for the verification periods are above 0.77 on the 95-, 96-daily events, while above 0.87 for 90-, 95-, 96-hourly events. By the consideration of flood flow characteristics in Korea, the physical interpretation of the model concept, and the model performance, it can be concluded that the TOPMODEL is feasible as a flood forecasting model in Korea. Korea.

  • PDF

Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model (격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석)

  • Park, In-Hyeok;Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Reevaluation of Operational Policies for a Reservoir System

  • Ko, Ick-Hwan;Choi, Ye-Hwan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.1-8
    • /
    • 1997
  • Abstract The need for integrated reservoir system operation become more intense as the demands from the system increase. A deterministic, three-dimensional discrete incremental dynamic programming approach is presented to derive reservoirs system operational planning strategies. The developed H3DP model optimizes the monthly operation of the Hwachon and Soyang Projects on the North Han river and Chungju Main Project on the South Han river. By using the H3DP model, Hwachon project was reevaluated as a component of the upstream multipurpose storage reservoirs in the basin based on 1993 hydrology. This case study demonstrates the practical use of the developed model for the basin multi-reservoir system operation in an integrated, multipurpose fashion.

  • PDF

Development of Land Surface Model for Soyang river basin (소양강댐 유역에 대한 지표수문모형의 구축)

  • Lee, Jaehyeon;Cho, Huidae;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.837-847
    • /
    • 2017
  • Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.

A Study on Proposal of Appropriate Rainfall-Runoff Model With Watershed Characteristics (유역특성을 고려한 적정 강우-유출모형의 제시에 관한 연구)

  • Choi, Han-Kyu;Baek, Kyung-Won;Choi, Yong-Mook
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.379-390
    • /
    • 1999
  • The purpose of this study is to investigate the applicability of Nakayasu & SCS method and Clark method to the computation of runoff from the river basin in Soyang watershed. As the result, each runoff was conducted to compare and analyze existing established peak flow model, and to propose a pertinent model.

  • PDF

Plausible grid size for a real time decision making system based 3D water quality model (실시간 수질관리도구로서의 3차원 수질모형의 최적 격자크기 산정)

  • Ahn, Ki-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.575-583
    • /
    • 2011
  • In this study, the plausible grid size was estimated to increase for efficiency of reservoir management using 3 dimensional water quality model. To validate utilization of a real time water quality management tool, ELCOM-CAEDYM model was applied to Soyang reservoir in korea. 100m grid size can represent the real topography and take out exact analysis results. $400{\times}400m$ grid can be easily used to analysis because of data capacity. Consequently, the grid size of 200m or 300m was recommended to establish 3D model considering the required simulation time and the irrelevance between horizontal grid size and vertical distribution for temperature and turbidity analysis.