• Title/Summary/Keyword: Sox 9

Search Result 100, Processing Time 0.042 seconds

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

Analysis of Molecular Expression in Adipose Tissue-Derived Mesenchymal Stem Cells : Prospects for Use in the Treatment of Intervertebral Disc Degeneration

  • Jin, Eun-Sun;Min, Joongkee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • Objective : Recent studies have shown encouraging progress toward the use of autogenic and allogenic mesenchymal stem cells (MSCs) to arrest, or even lead to partial regeneration in, intervertebral disc (IVD) degeneration. However, this technology is still in its infancy, and further development is required. The aim of this study was to analyze whether rat adipose-derived mesenchymal stem cells (ADMSC) can differentiate towards IVD-like cells after treatment with transforming growth factor ${\beta}3$ (TGF-${\beta}3$) in vitro. We also performed quantitative analysis of gene expression for ADMSC only, ADMSCs treated with TGF-${\beta}3$, and co-cultured ADMSCs treated with TGF-${\beta}3$. Methods : ADMSCs were sub-cultured to homogeneity and used in fluorocytometry assays for CD11, CD45, and CD90/Thy1. ADMSCs were differentiated in spheroid culture towards the chondrogenic lineage by the presence of TGF-${\beta}3$, dexamethasone, and ascorbate. We also co-cultured pure ADMSCs and nucleus pulposus cells in 24-well plates, and performed immunohistochemical staining, western blotting, and RT-PCR for quantitative analysis of gene expression. Results : Results of fluorocytometry were positive for CD90/Thy1 and negative for CD11 and CD45. TGF-${\beta}3$-mediated induction of ADMSCs led to the expression of the differentiation markers of intervertebral disc-like cells, such as aggrecan, collagen II, and sox-9. Co-cultured ADMSCs treated with TGF-${\beta}3$ showed higher expression of differentiation markers and greater extracellular matrix production compared with ADMSCs treated with TGF-${\beta}3$ alone. Conclusion : ADMSC treated with TGF-${\beta}3$ may be an attractive source for regeneration therapy in degenerative IVD. These findings may also help elucidate the pathologic mechanism of MSC therapy in the degeneration of IVD in vivo.

Changes in Composition of Gugija (Lycii Fructus) Species According to Harvest Time (수확시기에 따른 구기자 품종의 성분변화)

  • Lee, Hee-Chul;Lee, Bong-Chun;Kim, Su-Dong;Lee, Ka-Soon;Paik, Seung-Woo;Lee, Sox-Su;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.306-312
    • /
    • 2008
  • Total sugar, crude protein, crude lipid, ash, total polyphenol, extract and betaine contents of various Lycii fructus species (Cheongyang jaerae, Myungan, Bulro, Cheongdae, Jangmyung, Cheongwoon, Cheongyang NO.6, and Cheongyang NO.7) were investigated according to harvest time at intervals of one momth from mid August to mid November. In Cheongyang NO.6, average content of total sugar and extract were the highest, 28.91% and 62.31%, respectively. In Cheongyang NO.7, crude protein (3.24%), total polyphenol (2.13%), betaine(10.77 mg/g) were the highest and crude lipid (6.82%) was the higest in Cheongdae species, and ash (5.83%) was the highest in Cheongwoon species. At the most of the species (except Cheongyang jaerae, Myungan) crude protein, crude lipid, ash and betaine contents were increased, and total sugar, total polyphenol and extract contents were decreased according to harvest time was lated. Also, a relationship among the components of Lycii fructus was found out. ; excract contents (r = 0.81) were increased as total sugar contents were increased, while crude protein (r = -0.88), crude lipid (r = -0.82), ash contents (r = -0.81) were decreased as that And betaine contents (r = 0.90) were increased as total polyphenol contents were increased.

Cordycepin inhibits chondrocyte hypertrophy of mesenchymal stem cells through PI3K/Bapx1 and Notch signaling pathway

  • Cao, Zhen;Dou, Ce;Li, Jianmei;Tang, Xiangyu;Xiang, Junyu;Zhao, Chunrong;Zhu, Lingyu;Bai, Yun;Xiang, Qiang;Dong, Shiwu
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.548-553
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering to repair articular cartilage defects. However, hypertrophy of chondrocytes derived from MSCs might hinder the stabilization of hyaline cartilage. Thus, it is very important to find a suitable way to maintain the chondrogenic phenotype of chondrocytes. It has been reported that cordycepin has anti-inflammatory and anti-tumor functions. However, the role of cordycepin in chondrocyte hypertrophy remains unclear. Therefore, the objective of this study was to determine the effect of cordycepin on chondrogenesis and chondrocyte hypertrophy in MSCs and ATDC5 cells. Cordycepin upregulated chondrogenic markers including Sox9 and collagen type II while down-regulated hypertrophic markers including Runx2 and collagen type X. Further exploration showed that cordycepin promoted chondrogenesis through inhibiting Nrf2 while activating BMP signaling. Besides, cordycepin suppressed chondrocyte hypertrophy through PI3K/Bapx1 pathway and Notch signaling. Our results indicated cordycepin had the potential to maintain chondrocyte phenotype and reconstruct engineered cartilage.

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

A Study on Estimating Ship's Emission in the Port Area of Mokpo Port (목포항 항만구역 내 선박 배기가스 배출량 산정에 대한 연구)

  • Bui, Hai-Dang;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.47-60
    • /
    • 2023
  • A thorough inventory of ship emissions, particularly ship's emission of in-port area is necessary to identify significant sources of exhaust gases such as NOx, SOx, PM, and CO2 and trends in emission levels over time, and reduce their serious effects on the environment and human health. Therefore, the goal of this study is to assess the volume of emissions from ships in Mokpo port, which serves as a gateway to the southwest coast of Korea, using a bottom-up methodology and data from the automatic identification system (AIS) and the Korean Port Management Information System (Port-MIS). In this work, an analysis of ship movement utilizing AIS data and an actual set of data on ship specification were gathered. By examining ship movement using AIS data, We also proposed a new approach for identifying cruising/maneuvering mode. Finally, the results were classified by ship operating mode, by exhaust gas, by ship type, and by berth, which provides a thorough and in-depth analysis of the air pollution caused by ships in Mokpo port.

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.

Chemical Components, DPPH Radical Scavenging Activity and Inhibitory Effects on Nitric Oxide Production in Allium hookeri Cultivated under Open Field and Greenhouse Conditions (노지 및 시설재배 삼채 뿌리 및 잎의 이화학 성분, DPPH 라디칼 소거능 및 Nitric Oxide 생성 억제효과)

  • Won, Jun-Yeon;Yoo, Young-Choon;Kang, Eun-Ju;Yang, Hye;Kim, Gwan-Hou;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Lee, Sox-Su;Lee, Ka-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1351-1356
    • /
    • 2013
  • To enhance the utilization of Allium hookeri (AH) as a food, characteristics of AH roots and leaves cultivated under open field and greenhouse conditions were investigated. The moisture content of the roots and leaves were 81.05 to 84.18% and 88.85 to 90.12%, respectively. The moisture content of AH cultivated in the open field was 2 to 3% lower than the moisture content of AH cultivated in the greenhouse for both roots and leaves. The content of nitrogen-free extract, carbohydrates, was 13.49 to 16.20% in the roots and 7.08 to 7.79% in the leaves. The main mineral generated from both open field and greenhouse cultivation was potassium, at 503.98 to 512.08 mg% in leaves. The free sugar content of roots cultivated in the open field was four times higher than the content in the leaves, and roots cultivated in the greenhouse contained three times lower free sugar than the leaves. In particular, the fructose content of roots cultivated in the open field was about 12 times higher than roots cultivated in the greenhouse. The crude saponin and total polyphenol content was higher in leaves than roots, and was higher in the open field than the greenhouse. The $IC_{50}$ for DPPH radical scavenging activity was highest, 2.74 mg/mL, in 70% MeOH extracts of AH leaves cultivated in the greenhouse. Water and 70% MeOH extracts of AH leaves cultivated in the greenhouse showed no cytotoxicity to RAW 264.7 cells. Water extracts of AH leaves cultivated in the open field markedly inhibited the production of the inflammatory mediator nitric oxide. These results suggest that AH may be used as the material of health functional food.

Physicochemical Properties of Added Sugar Ratio on Gugija-Sugar Leaching by Using Gugija (Lycii fructus) Raw Fruit (구기자생과를 이용한 구기자청 제조시 당첨가량에 따른 이화학적 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Lee, Hee-Chul;Paik, Seung-Woo;Lee, Sox-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.744-751
    • /
    • 2008
  • Physicochemical properties of Gugija-sugar leaching were investigated by adding sugar ratio on Gugija (Lycii fructus) raw fruit. Gugija were prepared by parboiling ($40{\sim}50$ sec at $85^{\circ}C$) and unparboiling. Gugija-sugar leaching were leached after preserving (5 months at $5^{\circ}C$) Gugija-sugar mixture (20, 40, 60, 80 and 100% sugar based on raw Gugija). The yield increased with UPRGSL-4 (Gugija-sugar leaching adding 80% sugar) having the highest yield at 77.5%; in contrast, total acidity decreased with increasing ratio of sugar. The main organic acids of raw Gugija are tartaric acid (0.63%), citric acid (0.57%), malic acid (0.54%) and succinic acid (0.3%). Citric acid and succinic acid decreased with increasing ratio of sugar but malic acid and tartaric acid increased on Gugija-sugar leaching. Polyphenolics and betaine content of unparboiling Gugija-sugar leaching decreased as increase ratio of sugar but in term of used Gugija amount, betaine content of each Gugija-sugar leaching was equal to raw Gugija. Also, parboiling Gugija-sugar leaching decreased quickly with increasing ratio of sugar, especially PRGSL-4 and PRGSL-5 (parboiling Gugija-80 and 100% sugar leaching, respectively) was not determined. 15 types of free amino acids were detected in raw Gugija; the total content was 601.6 mg/100 g and the highest amino acid among them was serine, 218.1 mg/100 g. In PRGSL-4 prepared by parboiling, 9 kinds of free amino acid were detected and the total content was 383.3 mg/100g. Also, in UPRGSL-4 (unparboiling Gugija-80% sugar leaching), all 17 kinds were detected and its total content was 705.7 mg/100 g.