• Title/Summary/Keyword: Southern part of East Sea

Search Result 132, Processing Time 0.028 seconds

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile (마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화)

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

Relationship between Squid (Todarodes pacificus) Catch by Sea Block and Marine Environment in the East Sea during 1980s and 1990s (1980-1990년대 동해에서 해구별 오징어(Todarodes pacificus) 어획량과 해양환경의 관계)

  • Kim, Yoon-Ha;Moon, Chang-Ho;Choi, Kwang-Ho;Lee, Chung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.259-268
    • /
    • 2010
  • Data on squid catches by the Korean jig fishery in sea blocks ($30'{\times}30'$), water temperatures at depth(30m, 50m and 100m) and zooplankton biomass in the East Sea from 1980 to 1999 were analyzed to examine the mechanism of formation of the high density stock area. Japanese common squid (Todarodes pacificus) catch in the East Sea was low in 1980s, while the catch was high in 1990s. The five sea blocks (No. 76, 82, 83, 87, 88) of the southern part in the eastern coastal waters of Korea showed high levels of percentage of total catch (35.1%), whereas the four sea blocks (No. 65, 71, 72, 78) of the coastal waters of Uleung Island showed high levels of percentage of CPUE (61.2%) for 20 years. Squid catches showed monthly fluctuations according to the vertical distribution of optimum water temperature for fishing ($14^{\circ}C{\sim}19^{\circ}C$). High total catch and high CPUE area matched well with $10^{\circ}C$ isothermal lines at 100m depth indicating northern limiting of Tsushima Warm Current, and temporal and spatial change in $10^{\circ}C$ isothermal line caused the change in total catch and CPUE. Horizontal distribution of zooplankton biomass by sea block was not matched well with those of total catch and CPUE, however pattern of time-series change in total zooplankton biomass was similar to that in total squid catch.

Study on the Retreatment Techniques for NOAA Sea Surface Temperature Imagery (NOAA 수온영상 재처리 기법에 관한 연구)

  • Kim, Sang-Woo;Kang, Yong-Q.;Ahn, Ji-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • We described for the production of cloud-free satellite sea surface temperature(SST) data around Northeast Asian using NOAA AVHRR(Advanced Very High Resolution Radiometer) SST data during 1990-2005. As a result of Markov model, it was found that the value of Markov coefficient in the strong current region such as Kuroshio region showed smaller than that in the weak current. The variations of average SST and regional difference of seasonal day-to-day SST in spring and fall were larger than those in summer and winter. In particular, the distribution of the regional difference appeared large in the vicinity of continental in spring and fall. The difference of seasonal day-to-day SST was also small in Kuroshio region and southern part of East Sea due to the heat advection by warm currents.

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF

Deformation of Moho in the Southern Part of the Korean Peninsula (한반도 남부 모호면의 변형 구조)

  • Shin, Young-Hong;Park, Jong-Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.620-642
    • /
    • 2006
  • The Moho structure and its deformation in the southern part of the Korean Peninsula were estimated using gravity and topography data. Gravity signals from the upper and lower crust were separated using a filter that was computed from isostacy and elastic thickness. The result of this study shows three characteristic features of the Moho deformation. First, the Moho folding structure is parallel to SKTL (the South Korean Tectonic Line), which indicates positive association with the collision of the Yeongnam and Gyeonggi Massifs and repeated compression afterwards. In contrast, noticeable deformation of the Moho was not observed along the Imjingang Belt, which is interpreted as another continental collisional belt in the Korean Peninsula. Second, the Moho beneath the Gyeongsang Basin has remarkably risen; this seems to be the result from both the collisional compression and buoyancy caused by magmatic underplating. Third, the Moho deformation is shallowest in the east of the Taebaek Mountains and deepens toward the west, consistent with the topographic characteristic of the Korean Peninsula of "high east and low west". It can be interpreted as the results of the opening of the East Sea and Ulleung Basin. A tectonic explanation for this could be the ascent of the mantle induced by continental rifting and horizontal extension at the early stage of the opening of the East Sea. The Moho deformation model computed in this study correlates well with the earthquake distribution and crustal movement measured by GPS. We suggest that the compression along the SKTL is still exerted, consequently, the Moho deformation is active, although it may be weak.

Age Studies on the Butter Fish Population from Southwestern Waters of Korea

  • Han, Pyung Chin
    • 한국해양학회지
    • /
    • v.8 no.2
    • /
    • pp.68-74
    • /
    • 1973
  • The present paper concerns the age determination and growth of butter fish, Pampus argenteus from the southwestern waters of Korea by otolith reading. 743 specimens taken by stow-net in the southern part of the Yellow Sea and northeastern part of the East China Sea during the period from October 1972 to September 1973 were examined. Results of the study are summarized as follows: 1. Sex ratio of females to males was found to be 2:1. 2. Ring marks on the otolith were found to be formed twice a year, once during the period of January-May and the other time in September. 3. The Lee's phenomenon was observed on the otolith sample. 4. The relationship between the radius of otolith(R) and fork length(L) was found to be as follows: R=0.3069+0.0133L 5. Calculated fork length at the time of otolith ring formation are found to be as follows:I-ring,71.67mm; II-ring, 125.05mm; III-ring, 168.65mm; IV-ring, 201.74mm; V-ring, 225.80mm; VI-ring, 240.84mm. 6. Maximum fork length calculated according to the diagram of Walford's growth transformation was found to be 281.5mm. 7. Growth curve, when related to the von Bertalanffy's equation, was laid out as $L_{t}=281.5[1-e$^{-0.674(t-0.128)}]$

  • PDF

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern last Sea of Korea in October, 1995 (동해 극전선역의 영양염류 순환 과정 III. 1995년 10월 동해 중부 및 북부 해역의 수괴와 영양염의 분포)

  • CHO Hyun-Jin;MOON Chang-Ho;YANG Han-Seob;KANG Won-Bae;LEE Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 1997
  • A survey of biological and chemical characteristics in the middle-northern East Sea of Korea was carried out at 28 stations in October, 1995 on board R/V Tam-Yang. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW), (2) Tsushima Surface Water (TSW), (3) Tsushima Middle Water (TMW), (4) North Korean Cold Water (NKCW), (5) last Sea Porper Water (ESPW). Other 4 mixed water masses were also observed. It is highly possible that the LSSW which occured at depths of $0\~30m$ in the most southern part of the study area is originated from the Yangtze River (Kiang) of China due to very low salinity $(<32.0\%_{\circ})$ relatively high concentration of dissolved silicate and no sources of freshwater input into that area. Oxygen maximum layer in the vertical profile was located near surface at northern cold waters and became deeper at the warm southern area. Oxygen minimum layer af depths $50\~100m$, which is TMW, were found in only southern area. In the vortical profiles of nutrients, the concentrations were very low in the surface layer and increased drammatically near the thermocline. The highest concentration occurred in the ESPW. The relatively low value of Si/P ratio in the ESPW (13.63) compared to other reports in the East Sea was due to continuous increase of P with depth as well as Si. The N : P ratio was about 6.92, showing that nitrogenous nutrient is the limiting factor for phytoplankton growth. The exponential relationship between Si and P, compared to the linear relationship between N and P, indicates that nitrate and phosphate have approximately the same regenerative pattern, but silicate has delayed regenerative pattern.

  • PDF

Deceasing Trend of Summertime TC Frequency in Japan (여름철 일본에 영향을 주는 태풍빈도의 감소추세)

  • Choi, Jae-Won;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.851-864
    • /
    • 2015
  • This study analyzed the climate regime shift using statistical change-point analysis on the time-series tropical cyclone (TC) frequency that affected Japan in July to September. The result showed that there was a significant change in 1995 and since then, it showed a trend of rapidly decreasing frequency. To determine the reason for this, differences between 1995 to 2012 (9512) period and 1978 to 1994 (7894) period were analayzed. First, regarding TC genesis, TCs during the 9512 period showed a characteristic of genesis from the southeast quadrant of the tropical and subtropical western North Pacific and TCs during the 7894 period showed their genesis from the northwest quadrant. Regarding a TC track, TCs in the 7894 period had a strong trend of moving from the far east sea of the Philippines via the East China Sea to the mid-latitude region in East Asia while TCs in the 9512 period showed a trend of moving from the Philippines toward the southern part of China westward. Thus, TC intensity in the 7894 period, which can absorb sufficient energy from the sea as they moved a long distance over the sea, was stronger than that of 9512. Large-scale environments were analyzed to determine the cause of such difference in TC activity occurred between two periods. During the 9512 period, anomalous cold and dry anticyclones were developed strongly in the East Asia continent. As a result, Korea and Japan were affected by the anomalous northerlies thereby preventing TCs in this period from moving toward the mid-latitude region in East Asia. Instead, anomalous easterlies (anomalous trade wind) were developed in the tropical western Pacific so that a high passage frequency from the Philippine to the south China region along the anomalous steering flows was revealed. The characteristics of the anomalous cold and dry anticyclone developed in the East Asia continent were also confirmed by the analysis of air temperature, relative humidity and sensible heat net flux showing that most regions in East Asia had negative values.