• Title/Summary/Keyword: Southern ocean

Search Result 806, Processing Time 0.031 seconds

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

Spatial Distribution of Macrozoobenthic Organisms along the Korean Coasts in Summer Season (한국 연안의 하계 대형저서동물의 공간분포)

  • LEE, JUNG-HO;LIM, HYUN-SIG;SHIN, HYUN CHOOL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.87-102
    • /
    • 2022
  • To clarify the spatial distribution pattern of macrozoobenthos in Korean coastal waters in the summer season and investigate the relationship between community structure and benthic environmental factors, field surveys on community structure and benthic environmental factors were conducted at 117 stations in August 2017. A total of 613 macrobenthic species were identified, with the mean density of 1,228 ind./m2 and the mean biomass (wet weight) of 110.9 g WW/m2. Rich biodiversity was found at stations near Wando and along the coast of the East Sea, and there is a trend that stations with greater biodiversity also showed higher mean density as well. The dominant species in all the coastal areas in Korea was Heteromastus filiformis, which were found at most of the stations during the survey. The relatively deep areas in the East Sea were dominated by Magelona johnsoni and Maldane cristata, which were the third and ninth dominant species in the study areas, respectively. Pseudopolydora kempi and Rhynchospio sp. were observed only at the station located in the Nakdong River estuary. From the cluster analysis the stations could be clustered into three station groups with more similar faunal composition. Group A was located in the eastern coast, characterized with deep water depth and low levels of sand contents, while Group B was located in the southern coast, characterized by shallow depth of water and high content of mud and organic matter. Lastly, Group C was in the western coast, demonstrating low levels of mud content and organic matters. The biodiversity of macrobenthic species in the study area showed high positive correlation coefficients with benthic environmental factors such as sorting, clay, silt, and contents of organic matter in sediments, but negatively correlated with the sand contents. Major dominant species, Theora lata and Eriopisella sechellensis, both showed negative correlation coefficients with the sand contents, but a relatively high positive correlation with the levels of organic contents.It can be concluded that the spatial distribution patterns of macrobenthic organisms in Korean coastal waters are affected by depth, sediment type, and contents of organic matters.

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics (기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석)

  • Hyun, Yu-Kyung;Lee, Johan;Shin, Beomcheol;Choi, Yuna;Kim, Ji-Yeong;Lee, Sang-Min;Ji, Hee-Sook;Boo, Kyung-On;Lim, Somin;Kim, Hyeri;Ryu, Young;Park, Yeon-Hee;Park, Hyeong-Sik;Choo, Sung-Ho;Hyun, Seung-Hwon;Hwang, Seung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.

Indonesia, Malaysia Airline's aircraft accidents and the Indonesian, Korean, Chinese Aviation Law and the 1999 Montreal Convention

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.37-81
    • /
    • 2015
  • AirAsia QZ8501 Jet departed from Juanda International Airport in, Surabaya, Indonesia at 05:35 on Dec. 28, 2014 and was scheduled to arrive at Changi International Airport in Singapore at 08:30 the same day. The aircraft, an Airbus A320-200 crashed into the Java Sea on Dec. 28, 2014 carrying 162 passengers and crew off the coast of Indonesia's second largest city Surabaya on its way to Singapore. Indonesia's AirAsia jet carrying 162 people lost contact with ground control on Dec. 28, 2014. The aircraft's debris was found about 66 miles from the plane's last detected position. The 155 passengers and seven crew members aboard Flight QZ 8501, which vanished from radar 42 minutes after having departed Indonesia's second largest city of Surabaya bound for Singapore early Dec. 28, 2014. AirAsia QZ8501 had on board 137 adult passengers, 17 children and one infant, along with two pilots and five crew members in the aircraft, a majority of them Indonesian nationals. On board Flight QZ8501 were 155 Indonesian, three South Koreans, and one person each from Singapore, Malaysia and the UK. The Malaysia Airlines Flight 370 departed from Kuala Lumpur International Airport on March 8, 2014 at 00:41 local time and was scheduled to land at Beijing's Capital International Airport at 06:30 local time. Malaysia Airlines also marketed as China Southern Airlines Flight 748 (CZ748) through a code-share agreement, was a scheduled international passenger flight that disappeared on 8 March 2014 en route from Kuala Lumpur International Airport to Beijing's Capital International Airport (a distance of 2,743 miles: 4,414 km). The aircraft, a Boeing 777-200ER, last made contact with air traffic control less than an hour after takeoff. Operated by Malaysia Airlines (MAS), the aircraft carried 12 crew members and 227 passengers from 15 nations. There were 227 passengers, including 153 Chinese and 38 Malaysians, according to records. Nearly two-thirds of the passengers on Flight 370 were from China. On April 5, 2014 what could be the wreckage of the ill-fated Malaysia Airlines was found. What appeared to be the remnants of flight MH370 have been spotted drifting in a remote section of the Indian Ocean. Compensation for loss of life is vastly different between US. passengers and non-U.S. passengers. "If the claim is brought in the US. court, it's of significantly more value than if it's brought into any other court." Some victims and survivors of the Indonesian and Malaysia airline's air crash case would like to sue the lawsuit to the United States court in order to receive a larger compensation package for damage caused by an accident that occurred in the sea of Java sea and the Indian ocean and rather than taking it to the Indonesian or Malaysian court. Though each victim and survivor of the Indonesian and Malaysia airline's air crash case will receive an unconditional 113,100 Unit of Account (SDR) as an amount of compensation for damage from Indonesia's AirAsia and Malaysia Airlines in accordance with Article 21, 1 (absolute, strict, no-fault liability system) of the 1999 Montreal Convention. But if Indonesia AirAsia airlines and Malaysia Airlines cannot prove as to the following two points without fault based on Article 21, 2 (presumed faulty system) of the 1999 Montreal Convention, AirAsia of Indonesiaand Malaysia Airlines will be burdened the unlimited liability to the each victim and survivor of the Indonesian and Malaysia airline's air crash case such as (1) such damage was not due to the negligence or other wrongful act or omission of the air carrier or its servants or agents, or (2) such damage was solely due to the negligence or other wrongful act or omission of a third party. In this researcher's view for the aforementioned reasons, and under the laws of China, Indonesia, Malaysia and Korea the Chinese, Indonesian, Malaysia and Korean, some victims and survivors of the crash of the two flights are entitled to receive possibly from more than 113,100 SDR to 5 million US$ from the two airlines or from the Aviation Insurance Company based on decision of the American court. It could also be argued that it is reasonable and necessary to revise the clause referring to bodily injury to a clause mentioning personal injury based on Article 17 of the 1999 Montreal Convention so as to be included the mental injury and condolence in the near future.

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017 (인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성)

  • LEE, KYUNGJAE;NAM, SUNGHYUN;KIM, YOUNG-GYU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.267-281
    • /
    • 2019
  • Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.