• Title/Summary/Keyword: South-West Sea of Korea

Search Result 366, Processing Time 0.029 seconds

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

A study on the origination and transmission of Koh(袴) in Northeast Asia-from the 4th century to 7th century (동북아세아(東北亞細亞) 고(袴)의 발생(發生) 및 전파(傳播)에 관(關)한 연구(硏究) - $4{\sim}7$세기(世紀) 중심으로 -)

  • Park, Kyung-Ja;Lee, Jean-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.15
    • /
    • pp.177-194
    • /
    • 1990
  • Koh(袴) was a type of dress worn on the lower part of the body which was commonly used in the Northeast Asia. It was originally used by the Northern race for the need of nomadism or hunting. The origin of the Koh which appeared in the area would be found from the trousers of the Huns who influenced in the Northeast Asia, and became in the part of the Scythian culture. The Scythians are the nomadizing race inhabited in the Northern Caucasas on the wast of the Black Sea and influenced on the inland Eurasian steppe as the first typical horse-riding race. The objectives of Koh which had been worn in the Scythian, Mongolia, Korea as well as Japan as a part of Dongho dress and ornaments and to contemplate the transmission process by cultural exchange among different races for the period from 4th century to 7th century. 1. The Origination of the Koh The Koh was originated by the environmental factor to protect the cold in the North but also from the heat in the South, and was changed and developed as gradually satisfying to the needs of the times. In the Northeast Asia the Koh was in the class of the Northern Chinese garment, and was used widely by the horse riding Scythians who moved widely from the Eurasian inland to Japan. The oldest original which could reflect the type of the Northern clothes was a pair of trousers discovered in the Huns remains of Noin Ula. This showed the exact form of hunting clothes and had a similar form with the Korean female tro-users. Since the same form of trousers drawn on the wall painting of which was excavated 4-5th century ancient Koguryo(高句麗) tomb was the same form the trousers of Noin Ula seemed to be the original form of Koh in the Northeast Asia. 2. The Chinese Trousers It was the time of the King Mooryung(武靈王) in the Cho(趙) Dynasty B.C. 3th century that the trousers used regularly in China. However, the Koh had been used as undergarment which functioned for the protection of the cold not the horseriding garment. The trousers seemed to be not very obviously shown off since the Poh (袍) was long, but mainly used by the people from lower class. As people learned the adapted the trousers. It was essential for the times of war and quarrel. The king himself started wearing the Koh. The Chinese trousers were influenced by the Huns, the Northern clothes of the Scythian culture, and similar to the Korean clothes. 3. The Korean Trousers Korean was a race bared from the Eastern foreign group. It was obvious that the clothes was Baji-Jeogori(바지 저고리), the garment of the Northern people. This had the same form of the Scythian dress and ornaments which was excavated from the Mongolian Noin Ula. The Scythian dress and ornaments were influenced from the Ancient West Asia Empire and transmitted to the Northeast Koguryu by the horseriding Scythian. The trousers were kept in the traditional style by the common people in Korea were transmitted to Japan which were for behind in cultural aspect, as well as got used to the Chinese as the efficient clothes though active cultural exchange. 4. The Japanese Trousers The ancient Japanese clothes were influenced by the Southern factor but not the form of the Koh. As the Korean people group was moving towards Japan and conquer the Japanese in the 4-5th century, however, North Altaic culture was formed and at the same time the clothes were also developed. The most influenced clothes at this time were those of Baekge(百濟) and the trousers form called Euigon became the main form. Because of the climatic regional factor, it was tied not at the ankle but under the knee. From the view the ancient Japanese clothes disappeard about that time, it could be due to the conquest of the culturally superior race but not the transmission of the culture. In the latest 7th century both the Chinese and Japanese dress forms were present, but the Dongho(東胡) dress and its ornament from Korea was still the basic of the Japanese dress form.

  • PDF

Trace Metals (Mn, Zn, Cd, Pb) in the Shell of the Marine Gastropod, Littorina brevicula on Coastal Area, Korea (전국 연안의 총알고둥(Littorina brevicula: Gastropod) 패각 중 금속 원소(Mn, Zn, Cd, Pb)의 분포 특성)

  • Lim, Chae-Ryeol;Kang, Seong-Gil;Lee, Chang-Bok;Koh, Chul-Hwan;Choi, Man-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.119-130
    • /
    • 2000
  • Mn, Zn, Cd and Pb in shells of Littorina brevicula, which lives ubiquitously in intertidal zone around the Korean coast, were analyzed to determine the relationship between metal levels in its shell, ambient seawater and its tissue. Periwinkles and seawater samples were collected from 38 sites along the Korean coast in January 1997. Mn contents in shells of this organism show the range of 7.0 ${\mu}g$/g-211 ${\mu}g$/g (mean 59 ${\mu}g$/g) and are the lowest in northern east coast but high in western south and west coast. Close relationship between Mn contents in shells and metal levels both in seawater and in tissues indicates that Mn in shell might be incorporated from ambient seawater by a biological process. Although the contents of Cd in shells did not reflect the distribution of total Cd in seawaters and they were very low compared to those in tissues, they followed spatial gradient of contents in tissues. However, the spatial distribution of Zn contents in shells accords neither ambient seawater nor tissues, while it is negatively correlated with the contents of Na in shells. This fact suggests that Zn contents might be controlled by salinity of ambient seawater. On the contrary, Zn contents in highly polluted sites near Onsan Bay show generally higher levels than other sites. The contents of Pb show the range of 0.1 ${\mu}g$/g-17.5 ${\mu}g$/g (mean 1.01 ${\mu}g$/g) and the highest in sites near Onsan Bay. Although the spatial distribution of shell Pb does not follow those of tissue, Pb in shells of Littorina brevicula may be controlled both by shell secretion process and by Pb levels in ambient seawater because the contents of Pb in the shell decrease steadily with growth and vary with levels of Pb in ambient seawater.

  • PDF

Water Column Properties and Dispersal Pattern of Suspended Particulate Matter (SPM) of Marian Cove during Austral Summer, King George Island, West Antarctica (남극 킹죠지섬 마리안 소반의 하계 수층 특성과 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Ho-Il;Oh, Jae-Kyung;Kim, Yea-Dong;Kang, Cheon-Yun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.266-274
    • /
    • 1999
  • Vertical CTDT measurement at one point near tidewater glacier of fjord-head in Marian Cove, a tributary embayment of Maxwell Bay, South Shetland Islands was performed for 24 hours during the austral summer (January 21-22, 1998) to present water-column properties and SPM (suspended particulate matter) dispersal pattern in subpolar glaciomarine setting. Marian Cove shows three distinct water layers: 1) cold, freshened, and highly turbid surface plume in the upper 2 m, 2) warm, saline, and relatively clean Maxwell Bay water between 15-35 m in water depth, and 3) cold and turbid mid plume between 40-65 m in water depth. The surface plume is composed of silt-sized clastie particles mixed with flocculated biogenic detritus, and appears to originate from either supraglacial discharge by meltwater streams along the coast or water fall of ice cliff. Freshened and turbid mid plume consists exclusively of silt-sized clastic particles, resulting from subglacial discharge beneath the tidewater glacier. The disappearance of the two turbid plumes during the earlier period of measurement seems to be largely due to the breakup of the plumes by upwelling caused by strong easterly wind (> 8 m $sec^{-1}$). Thus, wind coupling over tidal effects regionally plays a major role in dispersal pattern of SPM as well as water exchange in Marian Cove.

  • PDF

Tie Spatial Structure of Ch'ang-ts'ai-ts'un Village A Case Study on a Rural Village of Korean Immigrants in Yen-pien Area of China (중국(中國) 연변지구(延邊地區) 조선족(朝鮮族)마을의 구성(構成) 룡정시 지신향 장재촌을 대상으로)

  • Lee, Kyu Sung
    • Journal of architectural history
    • /
    • v.3 no.1
    • /
    • pp.83-99
    • /
    • 1994
  • Ch'ang-Ts'al-Ts'un is a rural Village near Lung-jing City in Yen-pien Korean Autonomous Province of China. It was formed about 100 years ago by Korean Immigrants and has been developed maintaing the characteristics of traditional Korean architecture. Therefore investigating the spatial structure of this village is a meanigful work to confirm and explore one branch of Korean architecture. This study aims at analyzing the spatial structure of the village using direct data collected from the field work and indirect data from books and maps. The field work consists of on-the-site survey of the village layout, interviews of residents, observation notes and photography. Ch'ang-Ts'ai-Ts'un is located 360-370 m high above the sea level and at the side of a long valley. A river flows in the middle of the valley and relatively flat arable land exists at the both sides of the river. The location of the village related to the surrounding river and mountains suggests that the site of the village was chosen according to Feng-Shui, Chinese and Korean traditional architectural theory. The main direction of the house layouts is South-western. The village has been growing gradually until today. Therefore it is meaningful to make the village layout before Liberation(1946 A.D.) because the characteristics of Korean architecture prevailed more in that period. The area of the previous village is limited to the west side of the creek. New houses were later added to the east of the creek, forming a 'New Village'. Previously the village was composed of 3 small villages: Up, Middle and Down. Also the main access roads connecting the village with the neighboring villages were penetrating the village transversely. Presently the main access road comes to the village longitudinally from the main highway located in front of the village. The retrospective layout shows the existence of well-formed Territory, Places and Axes, thus suggesting a coherent Micro-cosmos. The boundary of imaginery territory perceived by present residents could be defined by linking conspicous outside places sorrounding the village such as Five-mountains, Front-mountain, Shin-dong village, Standing-rock, Rear-mountain and Myong-dong village. Inside the territory there are also the important places such as Bus-stop, Memorial tower of patriots, Road-maitenance building and the village itself. And inside it 5 transverse and 1 longitudinal axes exist in the form of river, roads and mountains. The perceived spatial structure of the village formed by Places, Axes and Territory is geometrical and well-balanced and suggests this village is fit for human settlement. The administrative area of the village is about 738 ha, 27 % of which is cultivated land and the rest is mountain area. Initially the village and surrounndings were covered with natural forest But the trees have been gradually cut down for building and warning houses, resulting in the present barren and artificial landscape with bare mountains and cultivated land. At present the area of the village occupied by houses is wedge-shaped, 600 m wide and 220 m deep in its maximum. The total area of the village is $122,175m^{2}$. The area and the rate of each sub-division arc as follow. 116 house-lots $91,465m^{2}$ (74.9 %) Land for public buildings and shops $2,980m^{2}$ (2.4 %) Roads $17,106m^{2}$ (14.0 %) Creek $1,356m^{2}$ (1.1 %) Vacant spaces and others $9,268m^{2}$ (7.6 %) TOTAL $122,175m^{2}$ (100.0 %) Each lot is fenced around with vertical wooden pannels 1.5-1.8 m high and each house is located to the backside of the lot. The open space of a lot is sub-divided into three areas using the same wooden fence: Front yard, Back yard and Access area. Front and back yards are generally used for crop-cultivation, the custom of which is rare in Korea. The number of lots is 116 and the average size of area is $694.7m^{2}$. Outdoor spaces in the village such as roads, vacant spaces, front yard of the cultural hall, front yard of shops and spacse around the creek are good 'behavioral settings' frequently used by residents for play, chatting, drinking and movie-watching. The road system of the village is net-shaped, having T-junctions in intersections. The road could be graded to 4 categories according to their functions: Access roads, Inner trunk roads, Connecting roads and Culs-de-sac. The total length of the road inside the village is 3,709 m and the average width is 4.6 m. The main direction of the road in the village is NNE-SSE and ESE-WNW, crossing with right angles. Conclusively, the spatial structure of Ch'ang-Ts'ai-Ts'un village consists of various components in different dimensions and these components form a coherent structure in each dimension. Therefore the village has a proper spatial structure meaningful and appropriate for human living.

  • PDF

Subalpine Vegetation Structure Characteristics and Flora of Mt. Seoraksan National Park (설악산국립공원 아고산대 식생구조 특성 및 식물상)

  • Lee, Sang-Cheol;Kang, Hyun-Mi;Kim, Dong-Hyo;Kim, Young-Sun;Kim, Jeong-Ho;Kim, Ji-Suk;Park, Bum-Jin;Park, Seok-Gon;Eum, Jeong-Hee;Oh, Hyun-Kyung;Lee, Soo-Dong;Lee, Ho-Young;Choi, Yoon-Ho;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.118-138
    • /
    • 2022
  • This study was conducted to identify the vegetation structure of major vegetation by region and elevation in the subalpine zone of Seoraksan National Park and prepare an inventory of flora. We reviewed the results of the previous subalpine studies and, through a preliminary survey, determined that the first appearance point of subalpine vegetation was about 800 m based on the south. Then we conducted a site survey by installing a total of 77 plots, including 12 plots on the northern Baekdamsa-Madeungnyeong trail (BD), 13 plots on the west Hangyeryeong-Kkeutcheong trail (HG), 13 plots on the east side of Sinheungsa-Socheongbong trail (SA), and 39 plots in the southern Osaek-Kkeutcheong, Osaek-Daecheongbong trail (OS), in an interval of 50 m above sea level. The analysis classified 7 communities, including Qercus mongolica-Abies holophylla-Acer pseudosieboldianumcommunity, Q. mongolica-Tilia amurensiscommunity, Q. mongolica-Pinus koraiensiscommunity, Q. mongolica-A. pseudosieboldianumcommunity, Betula ermanii-A. nephrolepiscommunity, P. koraiensis-A. nephrolepiscommunity, and mixed deciduous broad-leaf tree community according to the species composition based on the appearance of the major subalpine plants such as Quercus mongolica, Betula ermanii, and Abies nephrolepis, region, and elevation. 10.68±2.98 species appeared per plot (100 m2), and 110.87±63.89 individuals were identified. The species diversity analysis showed that the subalpine vegetation community of Seoraksan National Park was a mixed forest in which various species appeared as important species. Although there was a difference in the initial elevation for the appearance of major subalpine plants by region, they were distributed intensively in the elevation range of 1,100 to 1,300 m. In the Seoraksan National Park, 322 taxa, 83 families, 193 genera, 196 species, 1 subspecies, 26 varieties, and 4 forms of vascular plants were identified. One taxon of Trientalis europaeavar.arcticawas identified as the protected species. The endemic plants were 19 taxa, and 58 taxa were identified as subalpine plants.