• Title/Summary/Keyword: South Yellow Sea Basin

Search Result 20, Processing Time 0.029 seconds

A Study on Geophysical Characteristics and Regional Geological Structures of the Southwestern Yellow Sea of Korea using Gravity and Magnetic Data (중력 및 자력자료를 이용한 황해 남서부해역의 지구물리학적 특성 및 광역 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2010
  • Gravity and Magnetic survey data were analyzed to investigate the geophysical characteristics and regional geological structures of the southwestern Yellow Sea. The set of data about the southwestern part of the Yellow Sea in Korea was one collected by the Korea Ocean Research and Development Institute (KORDI) in 2003, 2004, and 2005. The Yellow Sea has a few basins and the study area also includes parts of the Heuksan Basin and the East China Sea Basin. The bathymetry of the study area ranges from about ?40 m southwestward near China to about 150 m northeastward near Korea. The bathymetry has the gentle rise and fall and the smooth slope. The gravity anomalies, from sea surface gravity and satellite gravity data, reflect the basement rocks rather than the smooth bathymetry. The gravity anomalies are higher on Northeastern part of the study area and lower over the South of the Heuksan Basin. The analytic signal from the Bouguer anomaly shows higher anomalous zones near the boundaries of the basins. The magnetic anomalies and the analytic signal, from the magnetic data, suggest that the complex anomalies on the Northern part are attributed to the volcanic intrusions and that the smooth patterns in the Southern part are based on the lack of the intrusions. The power spectrum analysis of the Bouguer anomalies and the magnetic anomalies indicate that the depth to the Moho discontinuity varies from about 30.2 to 28.3 km and that the depths of the basement rocks and the Eocene discontinuity range from about 8.4 to 8 km and from about 1.5 to 1.7 km, respectively. The inversion of the Bouguer anomaly shows that the Moho depth to the Western part of the study area near China is slightly deeper than the Eastern part near Korea. The result of 2-D gravity modeling has a good coherence with the results of the analytic signal, the power spectrum analysis, and the inversion.

Ocean Engineering Basic Test for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform (5MW급 해상풍력 Sub-structure Jack-up Platform 수조모형시험)

  • Jeon, Jung-Do;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • The safety and stability of 5MW class offshore wind turbine Jack-up platform was investigated through ocean basin experiment. For simulating the environmental condition of yellow sea in the South Korea, diverse waves, winds and currents were performed based on Froude's number. Regular wave and irregular wave based on Froude's number were applied to the wind turbine structure. In experiments, the height and period of regular wave type were scaled down as the 1:50 ratio of real wave condition. Irregular wave type was simulated with TMA(Texel Storm, Marsen and Arsloe)spectrum. The vertical reaction force, resonance period and wave pressure applied to multi-supporters of wind offshore structure were measured experimentally. Finally, the results showed that the capsizing situation of the offshore structure was generated by the severe environmental condition.

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

The Maritime Geography of Korea Strait: Suggested Nomenclature and Cartographic Boundaries Derived from a Review of Historical and Contemporary Maps (국제학술지, 지도, 문서에 나타난 대한해협 해양지명과 경계에 대한 인식 변화)

  • DO-SEONG BYUN;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.2
    • /
    • pp.63-93
    • /
    • 2023
  • This study aims to examine the history of naming the strait between the Yellow and East China Seas and the East Sea to suggest a consistent nomenclature and to demarcate the geographic region of the strait. Although the strait is internationally known as 'Korea Strait', it is commonly referred to as the 'South Sea' in Korean common usage. This review ultimately recommends the use of 'Korea Strait' as an appropriate geographical name for this area. To support this recommendation, the historical boundaries typically assigned to the Korea Strait were investigated. We also analyzed the evolution of geographical labels assigned to Korea Strait and to the Western and Eastern Channels (labels given to the two maritime areas surrounding Tsushima). Resources for this analysis included historic maps and charts, International Hydrographic Organization Special Publications (S-23), and maps published in the Ocean Science Journal (OSJ) and Journal of Oceanography (JO), which are two international journals representing Korean and Japanese sources, respectively, from 2005 to 2021. In these two international journals, the most frequently used names assigned to the strait of interest were Korea Strait (appearing 42.9% of OSJ maps, and 7.5% of JO maps), and Tsushima Strait (appearing 60.4% of JO maps, and 0% of OSJ maps). Other names were South Sea and Korea Strait/Tsushima Strait. On maps in the two reviewed journals, the boundaries of Korea Strait were defined explicitly or implicitly in five different ways: a broad region between the Yellow and East China Seas and Ulleung Basin (Type 1), the region between Ulleung Basin and Tsushima (Type 2), the western channel of the strait (Type 3-1), the eastern channel of the strait (Type 3-2), and both the western and eastern channels of the strait (Type 4). Overall, Type 1 was the most frequently used boundary, taking up 71.4% of OSJ and 60.4% of JO maps. Lastly, we suggest in this paper that the current flowing through Korea Strait from the East China Sea to the East Sea should be labeled the 'Korea Strait Warm Current' to indicate its full path through the strait. Currently, this current is internationally referred to as the 'Tsushima Warm Current', which does not link well to the commonly used geographic name of the strait.

Characteristics of Element Geochemistry in Ulleung Basin Sediments During the Late Quaternary (제4기 후기 동안 동해 울릉분지 퇴적물내 원소 함량 특성과 기원지 연구)

  • Um, In-Kwon;Choi, Man-Sik;Shin, Hyung-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.69-79
    • /
    • 2009
  • Major and trace elements were analyzed in three core sediments to investigate geochemical characteristics of East Sea sediments and provenance changes during late Quaternary in Ulleung Basin. Comparing with Yellow and South Sea sediments, contents of major elements were generally similar while contents of trace elements were significantly different. Furthermore, within this basin, there were some variabilities in trace element compositions. In the western slope sediments (WS), Mo was enriched over 6 times as much as other sites. On the other hand, Zr, Nb, Hf and Ta were enriched in basin sediments (Basin), and Ca and Cs were enriched in southern slope sediments (SS). After excluding elements derived from biogenic, authigenic and diagenetic origins, the lithogenic elements (K, Ti, Cs, Zr, Nb, Hf and Ta) could be classified into three groups from the comparison of element/Al ratios among cores. The first group consisted of elements (K and Ti) that showed the nearly similar element/Al ratios among three cores. The second group contained Cs which showed significant difference between two slope sediments. The third group elements (Zr, Nb, Hf and Ta) showed highly enriched in basin relative to both slope areas. The depth profiles of metal/Al ratios in basin sediments provided the following interpretation for the compositions of sediment and their variation. From 10,000 yr B.P. to 7,000 yr B.P. two lithogenic components (volcanic ashes and western slope sediments) were mixed and deposited in the basin. After 7,000 yr B.P., however, southern slope sediments were mixed with volcanic ashes and deposited in basin area. This event of source change is nearly close to inflow period of the Tsushima Warm Current to Ulleung Basin. Thus, it might be suggested that element geochemistry in Ulleung basin sediment indicate the change of current system in the study area.

Summary on the Dinoflagellate Cyst Assemblages of Modern Sediments from Korean Coastal Waters and Adjoining Sea (한국연안해역 와편모조류 시스트 연구에 관한 고찰)

  • Yoon, Yang Ho;Shin, Hyeon Ho
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.243-274
    • /
    • 2013
  • To investigate the research state and characteristics of dinoflagellate cyst along the Korean coastal waters, this work analyzed 45 studies conducted in the Korean coasts and basin, the south of Jeju, East China Sea including some part of the Yellow Sea. It was found that the research on dinoflagellate cyst began in the later half of the 1980s in Korea, and that the research areas focused on eutrophied regions where a red tide occurred or on the seas where coastal development occurred. In other words, no research on the East Sea was found. In terms of research contents, there were various studies on analysis of cyst assemblage, tracking of the changes in marine environment like process of eutrophication, roles as a seed population in occurrence of a red tide, creation of cyst by use of sediment trip and tracking of its changes, morphological changes by the change of pH concentration in the hypoxia zone of eutrophied region, germination of a specific species, and other international-level studies. Species composition and cell density also varied in the Korean coastal waters. However, much research on dinoflagellate cyst in Korea is not systematic, and is fragmentary and individual and hencesuffers from great limitations. The research results so far have focused only on specific regions, and sporadic research had been conducted by specific research groups. Dinoflagellate cyst of surface sediments represents the accumulation index of pelagic environment in the sea and is a useful index to understand the marine environment efficiently. In conclusion, Korea requires organized human resources and collaborative research on dinoflagellate cyst which in turn should be considered as a component of marine ecosystem and as an essential aspect of marine biology.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data (천리안해양위성 연속자료 구축을 위한 GOCI-II 임무 초기 주요 해색산출물의 GOCI 자료와 비교 분석)

  • Park, Myung-Sook;Jung, Hahn Chul;Lee, Seonju;Ahn, Jae-Hyun;Bae, Sujung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1281-1293
    • /
    • 2021
  • The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.