• 제목/요약/키워드: Source term analysis

검색결과 355건 처리시간 0.021초

MELCOR 코드를 이용한 원자력발전소 중대사고 방사선원항 평가 방법 (An Approach to Estimation of Radiological Source Term for a Severe Nuclear Accident using MELCOR code)

  • 한석중;김태운;안광일
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.192-204
    • /
    • 2012
  • For a severe accident of nuclear power plant, an approach to estimation of the radiological source term using a severe accident code(MELCOR) has been proposed. Although the MELCOR code has a capability to estimate the radiological source term, it has been hardly utilized for the radiological consequence analysis mainly due to a lack of understanding on the relevant function employed in MELCOR and severe accident phenomena. In order to estimate the severe accident source term to be linked with the radiological consequence analysis, this study proposes 4-step procedure: (1) selection of plant condition leading to a severe accident(i.e., accident sequence), (2) analysis of the relevant severe accident code, (3) investigation of the code analysis results and post-processing, and (4) generation of radiological source term information for the consequence analysis. The feasibility study of the present approach to an early containment failure sequence caused by a fast station blackout(SBO) of a reference plant (OPR-1000), showed that while the MELCOR code has an integrated capability for severe accident and source term analysis, it has a large degree of uncertainty in quantifying the radiological source term. Key insights obtained from the present study were: (1) key parameters employed in a typical code for the consequence analysis(i.e., MACCS) could be generated by MELCOR code; (2) the MELOCR code simulation for an assessment of the selected accident sequence has a large degree of uncertainty in determining the accident scenario and severe accident phenomena; and (3) the generation of source term information for the consequence analysis relies on an expert opinion in both areas of severe accident analysis and consequence analysis. Nevertheless, the MELCOR code had a great advantage in estimating the radiological source term such as reflection of the current state of art in the area of severe accident and radiological source term.

Evaluation of Effects of Impurities in Nuclear Fuel and Assembly Hardware on Radiation Source Term and Shielding

  • Taekyung Lee;Dongjin Lee;Kwangsoon Choi;Hyeongjoon Yun
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.193-204
    • /
    • 2023
  • To ensure radiological safety margin in the transport and storage of spent nuclear fuel, it is crucial to perform source term and shielding analyses in advance from the perspective of conservation. When performing source term analysis on UO2 fuel, which is mostly used in commercial nuclear power plants, uranium and oxygen are basically considered to be the initial materials of the new fuel. However, the presence of impurities in the fuel and structural materials of the fuel assembly may influence the source term and shielding analyses. The impurities could be radioactive materials or the stable materials that are activated by irradiation during reactor power operation. As measuring the impurity concentration levels in the fuel and structural materials can be challenging, publicly available information on impurity concentration levels is used as a reference in this evaluation. To assess the effect of impurities, the results of the source term and shielding analyses were compared depending on whether the assumed impurity concentration is considered. For the shielding analysis, generic cask design data developed by KEPCO-E&C was utilized.

Source term inversion of nuclear accidents based on ISAO-SAELM model

  • Dong Xiao;Zixuan Zhang;Jianxin Li;Yanhua Fu
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3914-3924
    • /
    • 2024
  • The release source term of radioactivity becomes a critical foundation for emergency response and accident consequence assessment after a nuclear accident Rapidly and accurately inverting the source term remains an urgent scientific challenge. Today source term inversion based on meteorological data and gamma dose rate measurements is a common method. But gamma dose rate actually includes all nuclides information, and the composition of radioactive nuclides is generally uncertain. This paper introduces a novel nuclear accident source term inversion model, which is Improve Snow Ablation Optimizer-Sensitivity Analysis Pruning Extreme Learning Machine (ISAO-SAELM) model. The model inverts the release rates of 11 radioactive nuclides (I-131, Xe-133, Cs-137, Kr-88, Sr-91, Te-132, Mo-99, Ba-140, La-140, Ce-144, Sb-129). It does not require the use of the physical field of the reactor to obtain prior information and establish a dispersion model. And the robustness is validated through noise analysis test. The mean absolute errors of the release rates of 11 nuclides are 15.52 %, 15.28 %, 15.70 %, 14.99 %, 14.85 %, 15.61 %, 15.96 %, 15.42 %, 15.84 %, 15.13 %, 17.72 %, which show the significant superiority of ISAO-SAELM. ISAO-SAELM model not only achieves notable advancements in accuracy but also receives validation in terms of practicality and feasibility.

볼륨비 이송방정식의 소스항을 이용한 자유수면 유동 해석의 해 확산 감소 (NUMERICAL DIFFUSION DECREASE OF FREE-SURFACE FLOW ANALYSIS USING SOURCE TERM IN VOLUME FRACTION TRANSPORT EQUATION)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM, which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley model ship. In results, the band width of the volume fraction contours between 0.1 to 0.9 at the hull surface was narrowed by considering the anti-diffusion term.

Use of MAAP in Generating Accident Source Term Parameters

  • Kim, Jong-Wok;Yun, Joeng-Ik;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.235-244
    • /
    • 1998
  • The parametric model method determines the accident source term which is Presented by a set of source term parameters. In this method, the cumulative distribution of each source term parameter should be derived for its uncertainty analysis. This paper introduces a method of generating the parameters in the form of cumulative distribution using MAAP version 4.0. In MAAP, there are model parameters which could incorporate uncertain physical and/or chemical phenomena. In general, the model parameters do not have a point value but a range. In this paper, considering that, the input values of model parameters influencing each parameter are sampled using LHS. Then, the computation results are shown in cumulative distribution form. For a case study, the CDFs of FCOR and WES of Kori Unit 1 are derived. The target scenarios for the computation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the computed CDF's in this study are consistent to those of NUREG-1150 and the use of MAAP is proven to be adequate in assessing the parameters of the severe accident source term.

  • PDF

격납건물종합누설률시험 주기연장을 위한 웹기반 소외결말분석 프로그램 개발 및 적용 (Development of Web-based Off-site Consequence Analysis Program and its Application for ILRT Extension)

  • 나장환;황석원;오지용
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.219-223
    • /
    • 2012
  • For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.

지하 처분장에서의 방사성폐기물 고화체의 용출 및 용해에 대한 수학적 모형 분석 (Mathematical Modeling for Leaching and dissolution of Solidified Radioactive Waste in a Geologic Reposiory)

  • Kim, Chang-Lak;Park, Kwang-Sub;Cho, Chan-Hee;Kim, Jhinwung;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.120-131
    • /
    • 1988
  • 지중매몰된 방사성핵종들이 지하수계를 통해 이동을 하는 Source를 수학적으로 표시하는 Source Term 모형이 필요하다. 물질전달식 또는 측정식에 근거한 여러 Source Term 모형을 비교 분석하였다. 일반적으로 용출 또는 용해에는 (1) 화학반응, (2) 확산 등에 의한 물질이동의 두 가지 작용이 관여한다. 화학반응은 고화체가 지하수에 노출된 후 초기의 짧은 기간 동안에만 용해율을 조절한다. 외부로의 물질전달율이 지하 처분장에서 방사성폐기물 고화체로부터의 장기간에 걸친 핵종유출율을 조절하는 역할을 한다. 물질전단 이론을 적용 할 때는, 필요로 하는 물질이동 현상을 기술할 수 있는 식을 선택해야 한다. 적절히 사용했을 경우, 물질전달 이론에 입각한 Source Term 모형은 핵종유출율의 신뢰할 만한 예측을 위한 귀중한 도구이다.

  • PDF

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

동위원소 생산공정에서 발생한 방사성 폐기물 장기저장소 온도평가 (Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production)

  • 정남균;조대성
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.471-475
    • /
    • 2016
  • 본 연구는 의료용 동위원소 생산공정에서 발생하는 방사성폐기물을 저장하는 장기저장소의 온도를 두 가지 방법으로 평가한 결과를 보여준다. 방사성폐기물에서 발생하는 열을 Volume source와 Point source로 가정하여 장기저장소의 온도를 평가한 결과, 폐기물 저장위치에 따른 최대온도분포는 유사하게 나타났으나 그 크기에 있어서 최대 $5^{\circ}C$ 정도의 차이를 보였다. 따라서, 개념설계를 위해서는 해석 시간이 오래 걸리는 Volume source를 이용한 3차원 해석보다는 Point source를 이용한 2차원 해석이 보다 효율적이지만, 상세 설계를 위한 정확한 해석 결과를 얻기 위해서는 Volume source를 이용한 3차원 해석이 수반되어야 함을 알 수 있다.

월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산 (Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1)

  • 노경호;하창주
    • 방사성폐기물학회지
    • /
    • 제13권1호
    • /
    • pp.21-34
    • /
    • 2015
  • 원자력발전소 해체를 준비하기 위해서는 해체대상 발전소에 대한 선원항 평가가 선행되어야 한다. 해체전략 수립단계에서 선원항 평가 결과를 토대로 해체 폐기물을 분류하고 비용평가를 수행한다. 본 연구에서는 월성 1호기의 예비 선원항 계산을 수행할 수 있도록 MCNP/ORIGEN-2 모델의 타당성 평가를 수행하였다. 연소도가 다른 핵연료 다발의 악티나이드 계열과 핵분열 생성물의 핵종 수밀도는 싱글 채널 모델을 이용하여 MCNPX 코드로 연소 계산하여 구하였다. 선원항의 정확도에 영향을 미치는 두가지 요인에 대해 조사하였다. 첫번째 요인으로 선원항 계산에 영향을 미치는 중성자 스펙트럼을 MCNP로 계산하여 해당 핵종의 1군 미시 핵단면적에 반영하였다. 중성자 스펙트럼이 반영된 라이브러리로 계산한 선원항과 ORIGEN-2 코드 package에 내장된 library (CANDUNAU.LIB)로 구한 선원항을 비교하였다. 두번째 요인으로 선원항에 대한 출력이력의 영향을 조사하였다. 해체 폐기물의 저준위 폐기물 처분 가능성을 살펴보기 위해, 2010년도 교체된 압력관, 칼란드리아관과 기존 칼란드리아 동체에 대하여 중성자 스펙트럼을 반영한 library를 적용하여 MCNP/ORIGEN-2로 선원항 평가 계산을 수행하였다.