• Title/Summary/Keyword: Source range estimation

Search Result 113, Processing Time 0.027 seconds

Vertical Vibration Decrease Effect of Slab in Shear-Wall Structures According to Property and Size of Structural Members (전단벽식 공동주택의 부재 물성치 및 크기 변화에 따른 슬래브 수직진동 저감 효과)

  • Chun Ho-Min;Yoo Seung-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.61-69
    • /
    • 2006
  • Vertical vibrations on the slab of buildings are affected by types of vibration sources, transfer paths, and the material property and the size of members. Among these parameters, the vibration sources and the transfer path can not be controlled, but the property and the size of members can be controlled in the phase of design the members. In this study, the vibration responses according to the property and size of members were obtained by using a prediction program based on dynamic-stiffness matrix. Three parameters which are not usually considered as major factors for architecral planning were selected fur these analyses. They are the strength of materials, the thickness of wall and the thickness of slab. The ground vibration source located near a building was used as vibration input data in the analyses. This study has its originality on presenting appropriate property and size of structural members in order to reduce vertical vibration of slab in shear-wall structures. Analysing the results from the vibration estimation program according to the variations of parameters, the appropriate ratio among the sizes of structural members were proposed. From these results, the vibration level on the slab which is not constructed yet would be predicted and the vibration peak level can be reduced or shifted into the desirable frequency range. Therefore, the vertical vibration could be controlled in the phase of designing buildings.

An Experimental Study on the Analysis of the Interventricular Pressure Waveform in the Moving-Actuator type Total Artificial Heart (이동작동기식 완전 이식형 인공 심장의 심실간 공간 압력 파형 해석에 관한 실험적 연구)

  • 조영호;최원우
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.25-36
    • /
    • 1997
  • To regulate cardiac output of the Total Artificial Heart(TAH) physiologically, the hemodynamic information must be toed back to the controller. So far, our group has developed an automatic cardiac output control algorithm using the motor current waveform, It is, however difficult to detect the preload level such as a filling status of ventricular inflow and the variation of atrial pressures within normal physiologic range(0-15 mmHg) by analyzing the motor current which simultaneously reflects the afterload effect. On the other hin4 the interventricular volume pressure(IVP) which is not influenced by arterload but by preload is a good information source for the estimation of preload states. In order to find the relationship between preload and IVP waveform, we set up the artificial heart system on the Donovan type mock circulatory system and measured the IVP waveform, right and left atrial pressures, inflow and outflow waveforms and the signals represented the information of moving actuator's position. We shows the feasibility of estimating the hemodynamic changes of inflow by using IVP waveform. fife found that the negative peak value of IVP waveform is linearly related to atrial pressures. And we also found that we could use the time to reach the negative peak in IVP waveform, the time to open outflow valve, the area enclosed IVP waveform as unfu parameters to estimate blood filling volume of diastole ventricle. The suggested method has advantages of avoiding thrombogenesis, bacterial niche formation and increasing longterm reliability of sensor by avoiding direct contact to blood.

  • PDF

Development of Wind Speed Estimator for Wind Turbine Generation System (풍력발전 시스템을 위한 풍속 추정기 개발)

  • Kim, Byung-Moon;Kim, Sung-Ho;Song, Hwa-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • As wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. The wind speed has a huge impact on the dynamic response of wind turbine. For this purpose, many control algorithms are in need for a method to measure wind speed to increase performance. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper, a new method based on Kalman filter and artificial neural network is presented for the estimation of the effective wind speed. To verify the performance of the proposed scheme, some simulation studies are carried out.

Estimation of Neutron Energy Spectrum of Cf-252 using Single Bonner Sphere with TLD-600 and TLD-700 (단일 보너구와 TLD-600 및 TLD-700을 이용한 Cf-252의 중성자 에너지 스펙트럼 평가)

  • Kim, Sunghwan;Cheon, Jongkyu;Lee, Jae Jin;Nam, Uk-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.223-226
    • /
    • 2013
  • We designed a single polyethylene bonner sphere with several thermo-luminescence dosimeters (TLD), for measurement of neutron energy spectrum. For the separation of the neutron dosage in the neutron-gamma mixed field, we used 21 ea TLD-600s and TLD-700s, respectively. Because, TLD-600 is sensitive to neutron and gamma rays, and, TLD-700 is sensitive only to gamma-rays, we could determine the each dose by neutron and gamma rays. The neutron response function of the bonner sphere with TLDs was calculated by MCNPX (ver. 2.5.0) Monte Carlo simulation in the energy range from $10^{-1}$ to 20 MeV. For the Cf-252 standard neutron source in KRISS, we could estimate the neutron energy spectrum by unfolding method using the response function.

Effect of initial ground temperature measurement on the design of borehole heat exchanger (초기 지중온도 측정이 지중 열교환기 설계에 미치는 영향)

  • Song, Yoon-ho;Kim, Seong-Kyun;Lee, Kang-Kun;Lee, Tae-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.600-603
    • /
    • 2009
  • We compared relative importance of thermal conductivity and initial ground temperature in designing borehole heat exchanger network and also we test accuracy of ground temperature estimation in thermal response test using a proven 3-D T-H modeler. The effect of error in estimating ground temperature on calculated total length of borehole heat exchanger was more than 3 times larger than the case of thermal conductivity in maximum 20% error range. Considering 10% of error in estimating thermal conductivity is generally acceptable, we have to define the initial ground temperature within 5% confidence level. Utilizing the mean annual ground surface temperature and the geothermal gradient map compiled so far can be a economic way of estimating ground temperature with some caution. When performing thermal response test for estimating ground temperature as well as measuring thermal conductivity, minimum 100 minutes of ambient circulation is required, which should be even more in case of very cold and hot seasons.

  • PDF

Estimation of Solar Radiation Distribution Considering the Topographic Conditions at Jeju Island (지형조건에 따른 제주도의 일사량 분포 추정)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • The solar radiation is the primary energy source that drives many of the earth's physical and biological processes and climate change. Understanding its importance to the solar radiation observation is a key to understanding a broad range of natural processes, agricultural, energy and human activities. The purpose of this study is to estimate solar radiation using sunshine duration, and to estimate distribution of solar radiation using a topography factor considering surface slope and aspect in complex terrain. The result of regression analysis between ratio of solar radiation and sunshine duration from 2001 to 2010 shows high $R^2$ value of 0.878. Regression analyses indicated that topographic attributes including elevation, slope and aspect had significant effects on solar radiation. The variation of topographic factor with aspect and slope for the summer and winter are considered. The highest month of daily mean solar radiation at Jeju island appears in April of 20.61 $MJ{\cdot}m^{-2}{\cdot}day^{-1}$, and the lowest month appears in December of 6.90 $MJ{\cdot}m^{-2}{\cdot}day^{-1}$. These results provided useful quantitative information about the influence of topography on solar radiation in the island region.

On the occurrence of yellow sand and atmospheric loadings (황사의 사례분석과 한반도 유입량)

  • 정용승;윤마병
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.233-244
    • /
    • 1994
  • The phenomenon of yellow sand (dust clouds) occurred in Korea during the spring of 1993 and 1994 is studied in detail. In total 6 cases including 15 days of yellow sand were observed in 1993 and the annual number of these events was found to increased. Examinations in this study include meteorological charts satellite imagery, pilot reports (PIREP) of Korea Air Force, and air concentrations of total suspended particulates(TSP). We present on estimation of total atmospheric loadings based on the observation and theory. According to the PIREP, in general the dust clouds travelled in the lower troposphere up to the level 5km. The visibility within the clouds was in the range of 3-8km The area covered by yellow sand in an event exceeded 0.4 M $\textrm{km}^2$ . According to trajectory analyses, dust clouds invaded Korea in April and May 1993 were landed in the sink area after 2~4 days travelling for 2,000~3,000km from a source region. Estimates of total atmospheric loadings of a dust cloud for April 23~24 in 1993 were 1.5 M ton. In addition, 7 dust storms were also reported in synoptic observations in NW China and Mongolia during the spring in 1994. The yellow sand was not reported with meteorological observations in Korea, however pilots reported significant dust clouds over the Yellow Sea on 8 and 13 April and 20 May 1994.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

IDENTIFICATION OF POSSIBLE MERCURY SOURCES AND ESTIMATION OF MERCURY WET DEPOSITION FLUX IN LAKE ONTARIO FROM LAKE ONTARIO ATMOSPHERIC DEPOSITION STUDY (LOADS)

  • Han, Young-Ji
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.306-315
    • /
    • 2005
  • Total gas phase mercury (TGM) concentrations and event wet-only precipitation for Hg were collected for nine months (from April, 2002 to Dec., 2002) at Sterling, NY on the shoreline of Lake Ontario. TGM concentrations measured in this study ($3.02{\pm}2.14\;ng/m^3$) were in somewhat high range compared to other background sites. Using simplified quantitative transport bias analysis (SQTBA) possible sources affecting high Hg concentration in Sterling was identified, and they are coal-fired power plants located in southern NY and Pennsylvania. Wet deposition measured at Mercury Deposition Network (MDN) sites including Pt. Petre and Egbert, ON were compared with data obtained at the Sterling to estimate the total mercury wet deposition flux to Lake Ontario. The wet deposition flux was calculated to be the highest at the Sterling site ($7.94\;{\mu}g/m^2$ from April, 2002 to Dec. 2002) and the lowest at the Egbert ($3.92\;{\mu}g/m^2$), due to the both the difference in precipitation depth and Hg concentration in the precipitation. The deposition measured at the Sterling site is similar to Lake Michigan deposition of $6-14\;{\mu}g/m^2$ (converted for ninth months) measured for Lake Michigan Mass Balance Study (LMMBS).

Material Life Cycle Assessment of Extrusion Process of A7003 (A7003 알루미늄 합금 압출공정의 MLCA 산정기술)

  • Jo Huyng-ho;Cho Hoon;Kim Byung-min;Kim Young-jig
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.43-49
    • /
    • 2002
  • A7003 alloy has characteristics of their excellent weldability, high corrosion resistance and superior plastic working however the broadening of application for the alloy has been hampered by the lower extrudability associated by Mg content. For improvement of extrudability and enhanced recovery efficiency during Al scrap recyeling, it has been generally practiced to reduce Mg content in A7003 alloy. Therefore, it is necessary to investigate the influence of Mg content on mechanical strength and extrudability of A7003 alloy. For efficient material processing which has small amounts, life cycle assessment in material processing(MLCA) is evaluated. The quantitative analysis of energy requirements and $CO_2$ emission for production of A7003 extruded bar are estimated with different Mg content and billet pre-heating process (heating source by light oil or LPG). In particular, the estimation of energy requirements was performed within shipping and gating range (except the mining and extraction stages)to investigate the influence of the variables on energy requirements and $CO_2$ emission in detail. As Mg content increased, the flow stress and the extrusion pressure for A7003 alloy increased. It has been thought that an increment in extrusion pressure with increasing Mg content is caused by the solid solution hardening of Mg atoms in the matrix and increment in volume fraction of intermetallic compound, $Mg_2Si$. The extrudability and the tensile strength are equal to, or above that of conventional A 7003 alloy even the content of Mg varied from $1.1wt.\%\;to\;0.5wt.\%$ alloy. This means that minimizing the content of Mg in A7003 alloy can enhance recovery efficiency during Al scrap recycling. It can be quoted that rather than Mg content energy source for billet heating is a prime factor to determine the atmospheric $CO_2$ emission.

  • PDF