• Title/Summary/Keyword: Source impedance

Search Result 378, Processing Time 0.031 seconds

Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix (ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • In the case of designing an acoustic transducer for high power application, we usually aim to transfer the source electric energy to the output acoustic energy as large as possible. For this purpose, we should match the impedance of the power amplifier to the impedance combined with the acoustic transducer impedance and the radiation impedance. Especially if we have electrical source with almost zero impedance, we need improve the power factor of the acoustic transducer in the load. In this paper, we propose a broad band impedance matching method by the improvement of power factor, which applies ABCD matrix.

Measurement of Nonlinear Time-variant Source Characteristics of Intake and Exhaust Systems in Fluid Machines

  • Jang Seung-Ho;Ih Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.87-89
    • /
    • 2005
  • The acoustical sources of intake and exhaust systems in fluid machines are often characterized by the source impedance and strength using linear frequency-domain modeling. In the case of the sources which are nonlinear and time-variant, however, the source parameters were sometimes incorrectly obtained. In this paper, the source model and direct measurement technique are modified in order to evaluate the effect due to nonlinear and periodically time-varying source character as well as the linear property of the reflectivity of in-duct fluid machine source. With a priori known kinematical information of the source, the types of nonlinear time-variant terms can be presumed by a simple physical model, in which there is practically no restriction on the form of the model. The concept of source impedance can be extendable by introducing the linear frequency response function for each nonlinear or time-variant input. Extending the conventional method and adapting the reverse MISO technique, it is possible to develop a direct method that can deal with the nonlinear time-variant source parameters. The proposed direct method has a novel feature that there is no restriction on the probability or spectral natures of the excited sound pressure data. The present method is verified by the simulated measurements for simplified fluid machines. It is thought that the proposed method would be useful in predicting the insertion loss or the radiated sound level from intake or exhaust systems.

Development of Respiration Monitor using Impedance Pneumograph (Impedance Pneumograph법을 이용한 호흡 감시장치의 개발)

  • 고한우;이건기
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.15-18
    • /
    • 1984
  • In this paper we developed a respiration monitor by an impedane pneumography. This technique, measuring the electrical impedance change of the lungs due to breath, provides the accurate data for the respiration trend and rates. To measure the small impedance difference we designed a special current source which was considered the electrical safety and the interference with the ECG signal.

  • PDF

A Three-Dimensional Calculation of the Reactor Impedance for Planar-Type Cylindrical Inductively Coupled Plasma Sources

  • Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2015
  • The reactor impedance is calculated for a planar-type cylindrical inductively coupled plasma source by expanding the electromagnetic fields into their Fourier-Bessel series forms including the three-dimensional shape of the antenna. The mode excitation method is utilized to determine the electromagnetic fields based on a Poynting theorem-like relationship. From the obtained electromagnetic fields, a tractable form of the reactor impedance is obtained as a function of various plasma and geometrical parameters and applied to carry out a parametric study.

On the in-duct acoustical source characteristics of a simplified time-varying fluid machine (시변하는 간단한 유체기계의 덕트 내 음원 특성에 대한 해석적 연구)

  • 이정권;장승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.517-521
    • /
    • 2001
  • Measurement techniques for the in-duct source characteristics of fluid machines can be classified into direct method and load method, according to whether the technique employs an external acoustic source or not. It has been known that the two methods yield different results and the load method used to come up with a negative source resistance, in spite of the fact that a very accurate prediction of radiated noise can be obtained by using any result. This paper is focused to the effect of time-varying nature of fluid machines on the output result. For this purpose, a simplified fluid machine consisting of a reservoir, a valve and a pipe is considered as representing a typical linear, periodic, time-varying system and the measurement techniques are simulated by utilizing the Hill equation and its steady-state forced response. In the load method, the source impedance turns out being dependent on the valve impedance at the calculation frequency and the valve and load impedances at other frequencies as well.

  • PDF

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In;Baek, Sang-Min;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Comparative Analysis on Ground Impedance for a Carbon Block and a Copper Rod (탄소블록과 동봉의 접지임피던스 비교 분석)

  • Seo, Jae-Suk;Park, Hee-Chul;Kil, Gyung-Suk;Oh, Jae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.472-477
    • /
    • 2013
  • This paper carried out the comparative analysis on ground impedance of a carbon block and a copper rod. Two types of grounding electrode were compared ; a carbon block (L : 1 m, ${\Phi}$ : 245 mm) buried at a depth of 0.8 m and a three-linked copper rod (L : 1 m, ${\Phi}$ : 10 mm) of equilateral triangles with 1 m spacing. Ground impedance depending on applied current source was evaluated by the application of a sine wave current with 60 Hz ~ 3.5 MHz, a fast-rise pulse with rising time of 200 ns, a standard lightning impulse of $8/20{\mu}s$ and a 600 Hz square wave. Ground impedance for both electrodes were almost the same value below 100 kHz, and increased rapidly afterwards. The maximum ground impedance appeared $400{\Omega}$ at around 1.5 MHz. Ground impedance of the carbon block was lower at the square wave and was higher at fast-rise pulse than that of the copper rod. Also, ground impedance as ages showed no difference for the last 8 months. From the results, it is likely that ground performance for both electrodes shows no difference against commercial frequency and lightning impulse current, while the copper rod shows better performance against a fast-rise pulse with rise-time of a few hundred ns.

Modifications of Numerical Impedance Boundary Conditions Considering Incident Acoustic Pressure (음향 입사파를 고려한 수치적 임피던스 경계조건의 보정)

  • Kim, Min-Woo;Park, Yong-Hwan;Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.344-348
    • /
    • 2007
  • The acoustic liner has been used for the suppression of noise. The impedance characteristics of the acoustic liner are increased by the incident pressure. For the estimation of the acoustic liner on the incident acoustic pressure effect, the modified impedance model is suggested on the basis of the GE impedance prediction model. The modified impedance model is originated from the 3 parameter impedance model, and extended to the incident pressure parameter. The modified model is applied on the simple duct analysis with variant source pressure. Through the computation, it is observed that the fore directivity patterns of the duct are varied by the incident SPL level.

  • PDF