Journal of information and communication convergence engineering
/
v.16
no.4
/
pp.228-234
/
2018
In software development, the quality of a product often depends on whether its developers can rapidly find and contribute to the proper tasks. Currently, the word data of projects to which newcomers have previously contributed are mainly utilized to find appropriate source files in an ongoing project. However, because of the vocabulary gap between software projects, the accuracy of source file identification based on information retrieval is not guaranteed. In this paper, we propose a novel source file identification method to reduce the vocabulary gap between software projects. The proposed method employs DBPedia Spotlight to identify proper source files based on semantic similarity between source files of software projects. In an experiment based on the Spring Framework project, we evaluate the accuracy of the proposed method in the identification of contributable source files. The experimental results show that the proposed approach can achieve better accuracy than the existing method based on comparison of word vocabularies.
We have tried to compare two different IDSs which are widespread over the network administrator, Snort and Suricata, in functional and performance aspects. Specifically, we focused on analyzing upon what functions for detecting threat were added newly and what Multi-Threading introduced newly for Suricata has influenced in a performance aspect. As a result, we could discover that there are some features in Suricata which has never existed in Snort such as Protocol Identification, HTTP Normalizer & Parser, and File Identification. Also, It was proved that the gap of PPS(Packets Per Second) becomes wider, as the number of CPU Cores which are working increase. Therefore, we could conclude that Suricata can be an efficient alternative for Snort considering the result that Suricata is more effective quantitatively as well as qualitatively.
Lee, Sanghoon;German, Daniel M.;Hwang, Seung-won;Kim, Sunghun
Journal of Computing Science and Engineering
/
v.9
no.4
/
pp.190-203
/
2015
Free and open source software (FOSS) has created a large pool of source codes that can be easily copied to create new applications. However, a copy should preserve copyright notice and license of the original file unless the license explicitly permits such a change. Through software evolution, it is challenging to keep original licenses or choose proper licenses. As a result, there are many potential license violations. Despite the fact that violations can have high impact on protecting copyright, identification of violations is highly complex. It relies on manual inspections by experts. However, such inspection cannot be scaled up with open source software released daily worldwide. To make this process scalable, we propose the following two methods: use machine-based algorithms to narrow down the potential violations; and guide non-experts to manually inspect violations. Using the first method, we found 219 projects (76.6%) with potential violations. Using the second method, we show that the accuracy of crowds is comparable to that of experts. Our techniques might help developers identify potential violations, understand the causes, and resolve these violations.
In this paper, we study abstracting and identifying license file from a package to prevent unintentional intellectual property infringement because of lost/modified/confliction of license information when redistributing open source software. To invest character of the license files, we analyzed 322 licenses by n-gram and TF-IDF methods, and abstract license files from the packages. We identified license information with a similarity of the registered licenses by cosine measurement.
Journal of Korea Society of Industrial Information Systems
/
v.19
no.2
/
pp.73-83
/
2014
Thanks to the development of diverse audio editing Technology, audio file can be easily revised. As a result, diverse social problems like forgery may be caused. Digital forensic technology is actively studied to solve these problems. In this paper, a hand-held device identification method, an area of digital forensic technology is proposed. It uses the noise features of devices caused by the design and the integrated circuit of each device but cannot be identified by the audience. Wiener filter is used to get the noise sounds of devices and their acoustic features are extracted via MIRtoolbox and then they are trained by multi-layer neural network. To evaluate the proposed method, we use 5-fold cross-validation for the recorded data collected from 6 mobile devices. The experiments show the performance 99.9%. We also perform some experiments to observe the noise features of mobile devices are still useful after the data are uploaded to UCC. The experiments show the performance of 99.8% for UCC data.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.4
/
pp.885-894
/
2016
As smartphones become more common, anybody can take pictures and record videos easily nowadays. Video files taken from smartphones can be used as important clues and evidence. While you analyze video files taken from smartphones, there are some occasions where you need to prove that a video file was recorded by a specific smartphone. To do this, you can utilize various fingerprint techniques mentioned in existing research. But you might face the situation where you have to strengthen the result of fingerprinting or fingerprint technique can't be used. Therefore forensic investigation of the smartphone must be done before fingerprinting and the database of metadata of video files should be established. The artifacts in a smartphone after video recording and the database mentioned above are discussed in this paper.
Journal of the Korea Society of Computer and Information
/
v.28
no.2
/
pp.89-97
/
2023
In this paper, we propose factors that make log analysis difficult and design technique for detecting various objects embedded in the logs which helps in the subsequent analysis. In today's IT systems, logs have become a critical source data for many advanced AI analysis techniques. Although logs contain wealth of useful information, it is difficult to directly apply techniques since logs are semi-structured by nature. The factors that interfere with log analysis are various objects such as file path, identifiers, JSON documents, etc. We have designed a BERT-based object pattern recognition algorithm for these objects and performed object identification. Object pattern recognition algorithms are based on object definition, GROK pattern, and regular expression. We find that simple pattern matchings based on known patterns and regular expressions are ineffective. The results show significantly better accuracy than using only the patterns and regular expressions. In addition, in the case of the BERT model, the accuracy of classifying objects reached as high as 99%.
Throughout developing digital technology, reproduction of image is growing better day by day. And at the same time, diverse image editing softwares are developed to manage images easily. In the process of editing images, those programs could delete or modify EXIF files which have the original image information; therefore images without the origin source are widely spread on the web site after editing. This matter could affect analysis of images due to the distortion of originality. Especially in the court of law, the source of evidence should be expressed clearly; therefore digital image EXIF file without deletion or distortion could not be the objective evidence. In this research, we try to trace the identification of a digital camera in order to solve digital images originality, and also we focus on lens distortion correction algorism which is used in digital image processing. Lens distortion correction uses mapping algorism, and at this moment it also uses interpolation algorism to prevent aliasing artifact and reconstruction artifact. At this point interpolation shows the similar mapping pattern; therefore we want to find out the interpolation evidence. We propose a minimum filter algorism in order to detect interpolation pattern and adjust the same minimum filter coefficient in two areas; one has interpolation and the second has no interpolation. Throughout DFT, we confirm frequency character between each area. Based on this result, we make the final detection map by using differences between two areas. In other words, thereby the area which has the interpolation caused by mapping is adjusted using minimum filter for detection algorism; the second area which has no interpolation tends to different frequency character.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.