• 제목/요약/키워드: Source and drain electrodes

검색결과 105건 처리시간 0.025초

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

GaAs Metal-Semiconductor Field-Effect Transistor에서 표면 결함이 소자의 전달컨덕턴스 분산 및 게이트 표면 누설 전류에 미치는 영향 (Effects of Surface States on the Transconductance Dispersion and Gate Leakage Current in GaAs Metal - Semiconductor Field-Effect Transistor)

  • 최경진;이종람
    • 대한전자공학회논문지SD
    • /
    • 제38권10호
    • /
    • pp.678-686
    • /
    • 2001
  • CaAs metal semiconductor field effect transistor (MESFET) 소자의 전달컨덕턴스 분산 (transconductance dispersion) 현상과 게이트 누설 전류의 원인을 capacitance deep level transient spectroscopy (DLTS) 측정을 이용하여 해석하였다. DLTS 스펙트럼에서는 활성화 에너지가 각각 0.65×0.07 eV와 0.88 × 0.04 eV인 두개의 표면 결함과 0.84 × 0.01 eV의 활성화 에너지를 갖는 EL2를 관찰하였다. 전달컨덕턴스 분산 측정 결과, 전달컨덕턴스는 5.5 Hz ∼ 300 Hz의 주파수 영역에서 감소하였다. 전달컨덕턴스 분산을 온도의 함수로 측정한 결과, 온도가 증가할수록 전이 주파수는 증가하였고 전이 주파수의 온도 의존성으로부터 0.66 ∼ 0.02 eV의 활성화 에너지를 구할 수 있었다. 게이트 누설 전류 측정에서는 0.15 V 이하의 게이트 전압에서 순 방향과 역 방향 게이트 전압이 일치하는 오믹 전류-전압 특성을 나타내었고 게이트 누설 전류의 온도 의존성으로부터 구한 활성화 에너지는 0.63 ∼ 0.01 eV로 계산되었다. 서로 다른 방법으로 구한 활성화 에너지의 비교로부터 표면 결함 H1이 주파수에 따라서 감소하는 전달컨덕턴스 분산 및 게이트 누설 전류의 원인임을 알 수 있었다.

  • PDF

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF

플라즈마 중합된 Styrene 박막을 터널링층으로 활용한 부동게이트형 유기메모리 소자 (Floating Gate Organic Memory Device with Plasma Polymerized Styrene Thin Film as the Memory Layer)

  • 김희성;이붕주;이선우;신백균
    • 한국진공학회지
    • /
    • 제22권3호
    • /
    • pp.131-137
    • /
    • 2013
  • 본 연구에서는 유기소자의 절연박막을 습식 공정이 아닌 건식 공정인 플라즈마 중합법을 이용하여 Styrene 유기물을 사용하여 절연박막을 제작하였다. 안정적인 플라즈마 형성을 위해 버블러와 써큐레이터를 활용하여 정량적인 모노머 주입을 가능하게 하였다. 본 연구에서는 플라즈마 중합된 Styrene 박막을 30, 60 nm 터널링층으로 활용하였고, Styrene 절연층의 두께를 430 nm, Au 메모리층의 두께를 7 nm, 활성층의 두께를 40 nm, 소스와 드레인 전극의 두께를 50 nm로 유기 메모리 소자를 제작하여 특성을 평가하였다. 40/-40 V의 double sweep시 45 V의 히스테리시스 전압을 얻을 수 있었고, 이는 MMA를 터널링층으로 활용한 유기 메모리 소자의 히스테리시스 전압이 27 V인 것과 비교하였을 때 60% 상승한 효과로 히스테리시스 전압이 18 V 이상 높은 결과이다. 이와 같은 결과로부터 플라즈마 중합된 Styrene 유기 박막의 높은 전하 포집 특성을 활용하여 전체층을 유기 재료로 제작한 유연한 메모리 소자의 응용 가능성을 기대한다.

Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상 (Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics)

  • 손희근;양정일;조동규;우상현;이동희;이문석
    • 대한전자공학회논문지SD
    • /
    • 제48권6호
    • /
    • pp.1-6
    • /
    • 2011
  • 투명 산화물 반도체 (Transparent Oxide-TFT)를 활성층과 소스/드레인, 게이트 전극층으로 동시에 사용한 비결정 indium zinc oxide (a-IZO), 절연층으로 co-sputtered $HfO_2-Al_2O_3$ (HfAIO)을 적용하여 실온에서 RF-magnetron 스퍼터 공정에 의해 제작하였다. TFT의 게이트 절연막으로써 $HfO_2$ 는 그 높은 유전상수( > 20)에도 불구하고 미세결정구조와 작은 에너지 밴드갭 (5.31eV) 으로 부터 기인한 거친계면특성, 높은 누설전류의 단점을 가지고 있다. 본 연구에서는, 어떠한 추가적인 열처리 공정 없이 co-sputtering에 의해 $HfO_2$$Al_2O_3$를 동시에 증착함으로써 구조적, 전기적 특성이 TFT 의 절연막으로 더욱 적합하게 향상되어진 $HfO_2$ 박막의 변화를 x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE)를 통해 분석하였다. XRD 분석은 기존 $HfO_2$ 의 미세결정 구조가 $Al_2O_3$와의 co-sputter에 의해 비결정 구조로 변한 것을 확인 시켜 주었고, AFM 분석을 통해 $HfO_2$ 의 표면 거칠기를 비교할 수 있는 RMS 값이 2.979 nm 인 것에 반해 HfAIO의 경우 0.490 nm로 향상된 것을 확인하였다. 또한 SE 분석을 통해 $HfO_2$ 의 에너지 밴드 갭 5.17 eV 이 HfAIO 의 에너지 밴드 갭 5.42 eV 로 향상 되어진 것을 알 수 있었다. 자유 전자 농도와 그에 따른 비저항도를 적절하게 조절한 활성층/전극층 으로써의 IZO 물질과 게이트 절연층으로써 co-sputtered HfAIO를 적용하여 제작한 Oxide-TFT 의 전기적 특성은 이동도 $10cm^2/V{\cdot}s$이상, 문턱전압 2 V 이하, 전류점멸비 $10^5$ 이상, 최대 전류량 2 mA 이상을 보여주었다.