• Title/Summary/Keyword: Source and Impact Area

Search Result 207, Processing Time 0.027 seconds

The Characteristics and Seasonal Variations of OC and EC for PM2.5 in Seoul Metropolitan Area in 2014 (서울지역의 PM2.5 중 OC와 EC의 특성 및 계절적 변화에 관한 연구)

  • Park, Jong Sung;Song, In Ho;Park, Seung Myung;Shin, Hyejung;Hong, Youdeog
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.578-592
    • /
    • 2015
  • To investigate characteristics and seasonal variations of carbonaceous species for $PM_{2.5}$ in Seoul metropolitan area, Korea, we measured organic carbon (OC) and elemental carbon (EC) from January 2014 to December 2014 using a semi-continuous OC/EC Analyzer (Model-4, Sunset Lab.). Mean concentrations of OC and EC were estimated $4.1{\pm}2.7{\mu}g/m^3$ and $1.6{\pm}1.0{\mu}g/m^3$, respectively. The annual averaged OC/EC ratio was $2.9{\pm}2.7$. Concentrations of OC and EC comprised 13% and 5% of $PM_{2.5}$ and the mass fraction of both was the highest in fall. OC and EC showed similar trend in seasonal variations. Concentrations of those showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were the best during the winter ($r^2=0.88$). As results of carbonaceous species analysis, the dominant factor in view of fine particle ($PM_{2.5}$) is primary emission source such as mobile, fossil fuel combustion during commute time(08:00~10:00 or 17:00~21:00) and winter season. Continuous monitoring of atmospheric carbonaceous species is essential to provide the science-based data to policy-maker establishing the air quality improvement policy.

Assessment of Emission Data for Improvement of Air Quality Simulation in Ulsan (울산 지역 대기질 모의능력 개선을 위한 배출량자료 평가)

  • Jo, Yu-Jin;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.456-471
    • /
    • 2015
  • Emission source term is one of the strong controlling factors for the air quality simulation capability, particularly over the urban area. Ulsan is an industrial area and frequently required to simulate for environmental assessment. In this study, two CAPSS (Clean Air Policy Support System) emission data; CAPSS-2003 and CAPSS-2010 in Ulsan, were employed as an input data for WRF-CMAQ air quality model for emission assessment. The simulated results were compared with observations for the local emission dominant synoptic conditions which had negative vorticities and lower geostrophic wind speed at 850hPa weather maps. The measurements of CO, $NO_2$, $SO_2$ and $PM_{10}$ concentrations were compared with simulations and the 'scaling factors' of emissions for CO, $NO_2$, $SO_2$, and $PM_{10}$ were suggested in in aggregative and quantitative manner. The results showed that CAPSS-2003 showed no critical discrepancies of CO and $NO_2$ observations with simulations, while $SO_2$ was overestimated by a factor of more than 12, while $PM_{10}$ was underestimated by a factor of more than 20 times. However, CAPSS-2010 case showed that $SO_2$ and $PM_{10}$ emission were much more improved than CAPSS-2003. However, $SO_2$ was still overestimated by a factor of more than 2, and $PM_{10}$ underestimated by a factor of 5, while there was no significant improvement for CO and $NO_2$ emission. The estimated factors identified in this study can be used as'scaling factors'for optimizing the emissions of air pollutants, particularly $SO_2$ and $PM_{10}$ for the realistic air quality simulation in Ulsan.

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Characterization of Dissolved Organic Matter in Stream and Industrial Waste Waters of Lake Sihwa Watershed by Fluorescence 3D-EEMs Analysis (형광 3D-EEMs를 이용한 시화호유역 하천 및 공단폐수의 유기물 특성 분석)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.803-810
    • /
    • 2009
  • This study is conducted to examine spatial variations of Dissolved Organic Matter (DOM) in stream and waste waters of the different watershed areas (agricultural, residential, and industrial complex area) by using fluorescence 3D-EEMs (3 Dimensional Excitation Emission Matrix Spectroscopy). Furthermore, the research investigates the changes of DOM characterization by synchronous and 3D-EEMs during a rainfall event. The characterizations of DOM obtained by 3D-EEMs show two noticeable peaks at humic and protein-like regions. Humic-like substances (HLS) are found in rural and urban areas, and humic and protein-like substances (PLS) are shown in industrial area. According to the fluorescence peak $T_1:C_1$ ratios, it is observed that high amount of HLS was discharged from Banweol Industrial Complex (3TG). Additionally, linear relationships (Regression rate, $r^2$=0.65, $r^2$=0.66) have been shown between PLS (peak $T_1,\;B_1$) and biochemical oxygen demand (BOD), which indicates the impact of sewage. For the rainfall event (30 mm), no remarkable difference of DOM was found at rural area except increment of fluorescence intensity comparing dry period. In contrast, HLS at urban area is highly discharged within 30 minutes from the beginning of rainfall. Also, there are high influences of HLS and PLS within 20 minutes at industrial complex (4TG). Fluorescence 3D-EEMs has not only verifies a watershed of DOM origination but also monitors diffuse and point source impacts.

A Sustainable Operation Plan for School Gardens - Based on a Survey of Elementary School Gardens in Seoul (학교 텃밭의 지속적인 운영방안에 관한 연구 - 서울특별시 초등학교의 학교 텃밭 실태조사를 바탕으로 -)

  • Choi, I-Jin;Lee, Jae Jung;Cho, Sang Tae;Jang, Yoon Ah;Heo, Joo Nyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.36-48
    • /
    • 2018
  • This study surveyed 599 elementary schools in Seoul to provide measures for the quantitative expansion and sustainable operation of environmentally-friendly school garden. Of all schools, 161 schools had formed and were operating school gardens. The total area of school gardens was $166,901m^2$ and the mean area was $131.2m^2$ in elementary, junior high and high schools in Seoul. Meanwhile, the total area of school gardens was $65,493m^2$ and the mean area was $363m^2$ in 161 schools that participated in the survey, indicating $1.15m^2$ per student. Of these schools, 11.8% were operating gardens themselves, while 50.3% were operating gardens that had been newly renovated or environmentally improved by institutional support projects after initially managing gardens themselves. According to the locations of school gardens, mixed-type gardening (a combination of school gardening and container vegetable gardening) accounted for 34.8%, followed by school gardening at 32.9%, container vegetable gardening at 29.2%, and suburb community gardening at 3.1%. Those in charge of garden operations were teachers at 51.6%, comprising the largest percentage. Facilities built when forming the garden included storage facilities for small-scale greenhouses and farming equipment at 26.1%, accounting for the largest percentage. No additional facilities constructed accounted for 21.7%. The greatest difficulty in operating gardens was garden management at 34.2%. The most needed elements for the sustainable operation of gardens were improvement in physical environment and the need for hiring a paid garden, each accounting for 32%. The most important purpose for school gardening was creating educational environments (81.6%). The major source for gaining information on garden management was consultation from acquaintances (67.8%). Schools that utilize plant waste from gardens as natural fertilizers accounted for 45.8% of all schools. Responses to the impact of operating school gardens for educational purpose were positive in all schools as 'very effective' in 63.2% and 'effective' in 36.8%. This study was meaningful in that it intended to identify the current status of the operation of school gardens in elementary schools in Seoul, support the formation of school gardens appropriate for each school with sustainable operation measures, implement a high-quality education program, develop teaching materials, expand job training opportunities for teachers in charge, devise measures to support specialized instructors, and propose the need for a garden management organization.

Fulfilling the Export Potential of Agricultural Production in the Context of Aggravating Global Food Crisis

  • Hassan Ali Al-Ababneh;Ainur Osmonova;Ilona Dumanska;Petro Matkovskyi;Andriy Kalynovskyy
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.128-142
    • /
    • 2024
  • Creation and implementation of export-oriented strategy is an urgent issue of economic development of any country. In an export-oriented model of economic development, exports should be a means of promoting economic growth and a tool to strengthen existing and potential competitive advantages. Agricultural production is the key factor in exports and the source of foreign exchange earnings in many countries. However, the export potential of agricultural producers may be inefficiently fulfilled due to the heterogeneity of countries in terms of economic development, trade relations and border policy. The aim of the research is to study the nature, main trends and problematic aspects of fulfilling the export potential of agricultural production in the context of aggravating food crisis. The study involved general scientific methods (induction and deduction, description, analysis, synthesis, generalization) and special (statistical method, economic analysis, descriptive statistics and interstate comparisons, graphical method). The need to ensure food security by countries around the world urges the importance of the agricultural sector as a catalyst for economic development, sources of foreign exchange earnings, investment direction, etc. The study of agricultural specialization led to the conclusion that wheat and sugar are goods with the highest export potential. It is substantiated that the countries of South America, OECD, North America and Europe have the highest level of realization of export potential of agricultural production, and African countries are import-dependent. In addition, the low export orientation of Africa and Asia due to the peculiarities of their natural and climatic conditions is established based on the assessment of export-import operations in the regional context. The internal and external export potential of each of the regions is analysed. Economic and mathematical simulation of assessing the impact of the most important factors on the wheat exports volumes was applied, which allowed predicting wheat exports volume and making sound management decisions regarding the realization of the export potential of agricultural companies. The inverse correlation between the exports volume and wheat consumption per capita, and the direct correlation between the effective size and area of land used for wheat cultivation was established through the correlation and regression analysis.

The Impact of Monsoon Rainfall on the Water Quality in the Upstream Watershed of Southern Han River (하절기의 집중강우가 남한강 상류수계 수질에 미치는 영향)

  • Park, Sung-Min;Shin, Yoon-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.373-384
    • /
    • 2011
  • The objective of this was to determine how the seasonal intensive rainfall influenced the water quality, and to analyze the long-term temporal trend of water chemistry and spatial heterogeneity in the upstream watershed of Southern Han River using water quality dataset from 1997 to 2007. The largest seasonal variability in most parameters occurred during the two month July and August and there were closely associated with a large spate of summer monsoon rain. Total phosphorus (TP), chemical oxygen demand (COD), and suspended solids (SS) were greater during summer than any other seasons, and had a direct correlation with precipitation (r>0.4, p<0.01, n-120). In addition, dissolved oxygen (DO) had and inverse function with precipitation (r=-0.542, p<0.01). Overall, the data of total phosphorus (TP) and suspended solids (SS) showed that water quality was worst in Site I1, compared to the others. This was due to continuous effluents from the highlands' fields and cattle farms within the upstream area of Doam lake (Song stream). Based on the overall dataset, an efficient water quality management is required in the highlands and farms areas for better water quality with precipitation (r.0.4, p<0.01, n=120).

Experimental Study on the Extinguishing Characteristics of Twin-fluid Nozzle using a Small-scale Hexane Pool Fire (소규모 헥산 풀화재를 이용한 2유체노즐의 소화 특성에 대한 실험적 연구)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Experiments were performed on 140 ml hexane pool fire extinguishment using a twin-fluid nozzle. For this pool fire, the area of the fire source (round shape of 80 mm in diameter) was $0.005027m^2$ and the measured heat release rate was 2.81 kW. The flow rates of water and gas (air and nitrogen) supplied to the twin-fluid nozzle were 156-483 g/min (~0.156-0.483 l/min) and 30-70 l/min, respectively. In the present experimental ranges, the high gas flow rate conditions led to the successful extinguishing of the pool fire. Under the low gas flow rate conditions in the extinguishment regime, the extinguishment time was long and the estimated water consumption was high. Under high gas flow rate conditions, however, the water flow rate conditions did not appear to have a great impact on the extinguishment time and estimated water consumption. On the other hand, in the present experimental ranges, the types of supply gas did not appear to affect the extinguishable flow rate condition, extinguishment time, and estimated water consumption. Finally, using the present experimental results with previous ones using a single-fluid nozzle, the water consumption of twin-fluid and single-fluid nozzles for extinguishing a 140 ml hexane pool fire were preliminarily compared and discussed.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.