• Title/Summary/Keyword: Source Term Characterization

Search Result 18, Processing Time 0.021 seconds

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

Aquifer Characterization in Cheon-an area by using long-term groundwater-level monitoring data

  • 원이정;김형수;구민호;김덕근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.565-569
    • /
    • 2003
  • One-year-long groundwater-level data have been collected from 18 wells in Cheon-an area. The result of barometric efficiency, autocorrelation, cross-correlation and statistical distribution evaluated from the measurement data shows that groundwater-level measurements from observation wells are the principal source of information about aquifer characteristics. Data from WA-2 has high barometric efficiency as well as steady decreasing auto-correlation coefficient, which means nonleaky confined aquifer, Most aquifers in this study show the unconfined properties so that barometric efficiencies are mostly low and the coefficients of cross-correlation between groundwater-level and precipitation are commonly high. This study showed that the long-term groundwater-level monitoring data without artificial stress such as pumping would give accurate information about aquifer characteristics.

  • PDF

Analysis of Nonpoint Source Pollution Runoff from Urban Land Uses in South Korea

  • Rhee, Han-Pil;Yoon, Chun-Gyeong;Lee, Seung-Jae;Choi, Jae-Ho;Son, Yeong-Kwon
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • A long-term nationwide nonpoint-source pollution monitoring program was initiated by the Ministry of Environment Republic of Korea (ME) in 2007. Monitoring devices including rain gauges, flow meters, and automatic samplers were installed in monitoring sites to collect dynamic runoff data in 2008-2009. More than 10 rainfall events with three or more antecedent dry days were monitored per year. More than 10 samples were collected and analyzed per event. So far, five land use types (single family, apartments, education facilities, power plants, and other public facilities) have been monitored 23 to 24 times each. Characterization of the runoff from different land use types will aid unit load estimation in Korea and hopefully in other countries with similar land use. The monitoring results will be reported regularly at national and international levels.

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

A Study on the Greenhouse Gas Intensity of Building Groups and Regional in Korea (국내 에너지다소비건물의 용도별.지역별 온실가스 배출원단위분석 연구)

  • Lee, Chung-Kook;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.162-169
    • /
    • 2012
  • Our country set the mid-term reduction goal of greenhouse gases up to 2020 in accordance with Bali roadmap agreed in 2007 through the negotiation with UNFCCC in 2009 and specified the proper goal as by the Basic Act on Green Growth that went into effect at April, 2010. First of all the enlargement of green building construction has been suggested as a worldwide strategy to achieve the green house gas reduction. Building area is one of most important sectors for the countermeasure of climate change agreement and the achievement of national green house gas reduction goal and the need to reduce its green house gases has been increased accordingly. The objective of the study is to examine the status and characterization of mass energy consumption local governmental buildings' green house gas emissions depending on usage (hotel, school, apartment, hospital) through the green house gas emission source unit analysis. The result indicated that the energy source unit was proportional to green house gas source unit and hotel showed the highest green house gas emission source unit per open area of construction unit, followed by hospital, apartment, and then school. In case of apartment, green house gas emission source unit per open area of construction unit decreased as year went on. Meanwhile school building showed a striking increase in the annual energy source unit.

Isolation and Characterization of Trophoblast Stem Cells-like Cells Derived from Human Term Placenta

  • Na, Kyu-Hwan;Shin, Kyung-Seon;Choi, Jong-Ho;Cha, Dong-Hyun;Kim, Gi-Jin
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • The trophectoderm is one of the earliest cell types to differentiate in the forming placenta. It is an important for the initial implantation and placentation during pregnancy. Trophoblast stem cells (TBSCs) develop from the blastocyst and are maintained by signals emanating from the inner cell mass. However, several limitations including rarity and difficulty in isolation of trophoblast stem cells derived from blastocyst still exist. To establish a model for trophoblast differentiation, we isolated TBSCs from human term placenta ($\geq$38 weeks) and characterized. Cell cycle was analyzed by measuring DNA content by FACS analysis and phenotype of TBSCs was characterized by RT-PCR and FACS analysis. TBSCs have expressed various markers such as self-renewal markers (Nanog, Sox2), three germ layer markers (hNF68, alpha-cardiac actin, hAFP), trophoblast specific markers (CDX-2, CK7, HLA-G), and TERT gene. In FACS analysis, TBSCs isolated from term placenta showed that the majority of cells expressed CD13, CD44, CD90, CD95, CD105, HLA-ABC, cytokeratin 7, and HLA-G. Testing for CD31, CD34, CD45, CD71, vimentin and HLA-DR were negative. TBSCs were shown to decrease the growth rate when cultured in conditioned medium without FGF4/heparin as well as the morphology was changed to a characteristic giant cell with a large cytoplasm and nucleus. In invasion assay, TBSCs isolated from term placenta showed invasion activities in in vivo using nude mice and in vitro Matrigel system. Taken together, these results support that an isolation potential of TBSCs from term placenta as well as a good source for understanding of the infertility mechanism.

Preparation and characterization of the primary gas standards for isoprene (아이소프렌 일차표준가스의 제조 및 특성 평가)

  • Kim, Taesu;Kang, Chul-Ho;Kim, Yong Doo;Lee, Seungho;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-363
    • /
    • 2014
  • Isoprene is a one of the biogenic volatile organic compounds (BVOCs) and it is known as a source of the tropospheric ozone and formaldehyde. In addition, isoprene is a trace component of the exhaled breath and it is a potential biomarker for the diagnosis of diseases such as lung cancer. In these regards, isoprene gas standards are required for the accurate measurement of isoprene in air samples. To establish a standard for isoprene gas, gravimetric preparation and characterization of primary gas standards were studied. The primary gas standards were produced independently in 4 aluminum cylinders and concentrations were examined by GC-FID. As a result, the uncertainty of the gravimetric preparations including purity of the raw material was 0.01% and reproducibility of the preparation of independent 4 cylinders was 0.08%. The primary gas standards for isoprene showed 14 months of long-term stability. The relative expended uncertainty of 2.8% (95% of confidence level, k=1.96) was assigned to the certified value of 10 ${\mu}mol$/mol level of isoprene based on the quantitative evaluation of the purity, weighing, reproducibility, adsorption and long-term stability.

Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 중수로 사용후핵연료 현황 및 선원항 분석)

  • Cho, Dong-Keun;Lee, Seung-Woo;Cha, Jeong-Hun;Choi, Jong-Won;Lee, Yang;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Inventories to be disposed of, reference turnup, and source terms for CANDU spent fuel were evaluated for geological disposal system design. The historical and projected inventory by 2040 is expected to be 14,600 MtU under the condition of 30-year lifetime for unit 1 and 40-year lifetime for other units in Wolsong site. As a result of statistical analysis for discharge burnup of the spent fuels generated by 2007, average and stand deviation revealed 6,987 MWD/MtU and 1,167, respectively. From this result, the reference burnup was determined as 8,100 MWD/MtU which covers 84% of spent fuels in total. Source terms such as nuclide concentration for a long-term safety analysis, decay heat, thermo-mechanical analysis, and radiation intenity and spectrum was characterized by using ORIGEN-ARP containing conservativeness in the aspect of decay heat up to several thousand years. The results from this study will be useful for the design of storage and disposal facilities.

  • PDF

Aerosol Particle Analysis Using Microwave Plasma Torch (마이크로파 플라즈마 토치를 이용한 에어로졸 입자 분석)

  • Kim, Hahk-Joon;Park, Ji-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.204-207
    • /
    • 2011
  • A particle counting system that can also provide sensitive, specific chemical information, while consuming very less power, occupying less space, and being inexpensive has been developed. This system uses a microwave plasma torch (MPT) as the excitation source for atomic emission spectrometry (AES). Emission from a single particle can be detected, and the wavelength at which the emission is observed indicates the elements present in the particle. It is believed that correlating the particle size and emission intensity will allow us to estimate the particle size in addition to abovementioned capabilities of the system. In the long term, this system can be made field-portable, so that it can be used in atmospheric aerosol monitoring applications, which require real-time detection and characterization of particles at low concentrations.