• Title/Summary/Keyword: Sound parameters

Search Result 607, Processing Time 0.027 seconds

Acoustic and Electrical Analysis of Microspeaker for Mobile Phones (모바일 폰용 마이크로스피커의 음향 및 전기 해석)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.525-536
    • /
    • 2014
  • In this paper, GUI program for microspeaker system simulation program was developed and verified through closed box, vent box and 6th order bandpass enclosure system. By using the pseudo loudspeaker model concept, TS parameters and rear volume of microspeaker were identified. Their suitabilities were proved by comparing test results with simulations of electrical impedance and sound pressure response curves for the three box types; closed box, vent box and 6th order bandpass box. Also, MSSP was found to be effective regardless of the microspeaker's shape, either circular or rectangular shape. MSSP can be used for the microspeaker system simulation, and can give a general prediction of such as; sound pressure level curve, electrical impedance, diaphragm velocity and displacement curve according to multiple design parameters; diaphragm mass, compliance, force factor, front and rear volume, front and rear port's diameter and length.

An Aerodynamic and Acoustic Analysis of the Breathy Voice of Thyroidectomy Patients (갑상선 수술 후 성대마비 환자의 기식 음성에 대한 공기역학적 및 음향적 분석)

  • Kang, Young-Ae;Yoon, Kyu-Chul;Kim, Jae-Ock
    • Phonetics and Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Thyroidectomy patients may have vocal paralysis or paresis, resulting in a breathy voice. The aim of this study was to investigate the aerodynamic and acoustic characteristics of a breathy voice in thyroidectomy patients. Thirty-five subjects who have vocal paralysis after thyroidectomy participated in this study. According to perceptual judgements by three speech pathologists and one phonetic scholar, subjects were divided into two groups: breathy voice group (n = 21) and non-breathy voice group (n = 14). Aerodynamic analysis was conducted by three tasks (Voicing Efficiency, Maximum Sustained Phonation, Vital Capacity) and acoustic analysis was measured during Maximum Sustained Phonation task. The breathy voice group had significantly higher subglottal pressure and more pathological voice characteristics than the non breathy voice group. Showing 94.1% classification accuracy in result logistic regression of aerodynamic analysis, the predictor parameters for breathiness were maximum sound pressure level, sound pressure level range, phonation time of Maximum Sustained Phonation task and Pitch range, peak air pressure, and mean peak air pressure of Voicing Efficiency task. Classification accuracy of acoustic logistic regression was 88.6%, and five frequency perturbation parameters were shown as predictors. Vocal paralysis creates air turbulence at the glottis. It fluctuates frequency-related parameters and increases aspiration in high frequency areas. These changes determine perceptual breathiness.

Sound parameters for classifying individual sows(Landrace×Yorkshire) during nursing behavior (수유행동시 모돈(랜드레이스×요크셔) 발성음의 개체 판별을 위한 음성 파라미터)

  • Jeon, Jung-Hwan;Chang, Hong-Hee;Ha, Jeung-Key;Kim, Hyeon-Hui;Koo, Ja-Min;Lee, Hyo-Jong;Yeon, Seong-Chan
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.165-169
    • /
    • 2003
  • The aim of the present study was to analyse grunts of the sows and to extract parameters from the time and frequency signals in nursing behavior. Five crossbred $Landrace{\times}Yorkshire$ sows were used on day 5 or 6 postpartum. The grunts and the behaviors of the five sows were recorded with five digital camcorders. Three parameter groups [Group I: Formant vector alone, Group II: Formant vector+parameters from time signal, Group III: Formant vector+parameters from time signal-parameters eliminated by stepwise discriminant analysis backward (SDAB)] with parameter vectors extracted from single grunts in the maximum grunting rate period were used for individuality of the sows. The parameter groups were compared by a discriminant function analysis. The classification system adopted in the Group II represented the higher discriniation rate than those in other groups (Group I: 63.3%, Group II: 83.0%, Group III: 80.0%). This study demonstrated that formant, intensity, and pitch were available sound parameters for individuality of the sows during nursing behavior.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

Characteristic of room acoustical parameters with source-receiver distance on platform in subway stations (지하철 승강장의 음원-수음점 거리에 따른 실내음향 평가지수 특성)

  • Kim, Suhong;Song, Eunsung;Kim, Jeonghoon;Lee, Songmi;Ryu, Jongkwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.615-625
    • /
    • 2021
  • Prior to proposing appropriate standard for subway station platform, this study conducted field measurements to examine characteristics of room acoustics on platform of two subway stations. As a result of analyzing the longitudinal length of the platform, Sound Pressure Level (SPL) decreased (maximum difference : 14 dB), Reverberation Time (RT) tended to increase (maximum difference of 0.8 s ~ 1.5 s), and C50 and D50 were decreased (maximum difference: 5.9 dB ~ 9.1 dB and 31.8 % ~ 37.6 %, respectively) as measurement positions moved away from the sound source. The Interaural Cross-correlation Coefficient (IACC) did not show clear tendency, but it was lower than 0.3 in entire points. It is judged that the subway platform has non-uniform sound field characteristics due to various combinations of direct and reflective sound even though it is finished with a strong reflective material.This indicates that the room acoustic characteristics of the near and far sound field are clearly expressed depending on the source-receiver distances in the subway platform having a long flat shape with a low height compared to the length.Therefore, detailed architectural and electric acoustic design based on the characteristics of each location of speaker and sound receiver in the platform is required for an acoustic design with clear sound information at all positions of the platform.

Implementation of Parallel Processor for Sound Synthesis of Guitar (기타의 음 합성을 위한 병렬 프로세서 구현)

  • Choi, Ji-Won;Kim, Yong-Min;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Physical modeling is a synthesis method of high quality sound which is similar to real sound for musical instruments. However, since physical modeling requires a lot of parameters to synthesize sound of a musical instrument, it prevents real-time processing for the musical instrument which supports a large number of sounds simultaneously. To solve this problem, this paper proposes a single instruction multiple data (SIMD) parallel processor that supports real-time processing of sound synthesis of guitar, a representative plucked string musical instrument. To control six strings of guitar, we used a SIMD parallel processor which consists of six processing elements (PEs). Each PE supports modeling of the corresponding string. The proposed SIMD processor can generate synthesized sounds of six strings simultaneously when a parallel synthesis algorithm receives excitation signals and parameters of each string as an input. Experimental results using a sampling rate 44.1 kHz and 16 bits quantization indicate that synthesis sounds using the proposed parallel processor were very similar to original sound. In addition, the proposed parallel processor outperforms commercial TI's TMS320C6416 in terms of execution time (8.9x better) and energy efficiency (39.8x better).

Development of Rustling Sound Generator Using Reciprocating Motion and Evaluation of Its Fabric Sound (왕복운동에 의한 직물마찰음발생장치의 개발 및 이를 이용한 직물소리 평가)

  • Kim Chun-Jeong;Cho Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • In order to investigate the sensation of the fabric sound simulating the real wear-condition, the fabric sound simulator using reciprocating friction was developed. Fabric sounds from 5 specimen were generated by the fabric sound simulator and recorded using high performance microphone. Physical sound parameters of fabrics including level pressure of total sound (LPT), level range (${\Delta}L$), and frequency differences (${\Delta}f$) were calculated. For psychological evaluation, seven adjectives for sound (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) were used as the semantic differential scale. Fabric sounds by reciprocating friction of nylon taffeta and polyester leno had the highest value of LPT and evaluated as loud, sharp, rough, and unpleasant while polyester ultra suede and silk crepe de chine haying the lower LPT and ${\Delta}f$ were perceived as soft and quite. Comparing with fabric sound by one-way friction, fabric sound by reciprocation friction was perceived as more sharp, loud, and rough. LPT was also the most important factor affecting the sensation of the fabric sound by reciprocating friction.

  • PDF

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

Experimental Study on the Exhaust Pressure Charactieristics in the small motorcycle. (소형 이륜자동차의 머플러 배기압력 특성에 관한 실험적 연구)

  • Yi, C.S.;Choi, S.C.;Bae, J.Y.;Chung, H.S.;Jeong, H.M.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.678-683
    • /
    • 2004
  • In this study, a experiment has been developed for measuring the exhaust pressure of muffler at inlet and outlet. The main experimental parameters were a engine speed and sound absorbing material in the muffler. The muffler sound absorbing material tested a steel wool and glass wool. The exhaust pressure was measured with pressure sensor. The phase of exhaust pressure with high speed was moved according to increasing engine speed comparing with exhaust pressure with low speed. Also, the distribution of exhaust pressure at the model-1, 2 and 3 are similar with distribution of exhaust pressure at muffler inlet.

  • PDF

Personal monitor & TV audio system by using speaker array (스피커 어레이를 이용한 개인용 모니터와 TV 오디오 시스템)

  • Lee, Chan-Hui;Chang, Ji-Ho;Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.638-643
    • /
    • 2007
  • With development of high display quality of TV and Monitor, personal audio system is arising great interest. In this study, we applied a method to make a good bright zone around the user and dark zone to other region by maximizing the ratio of sound energy between the bright and dark zone. We have attempted to use a line speaker array system to localize the sound in our listening zone. It depends on the size of the zone and array parameters, for example, array size, speaker spacing, wave length of sound.

  • PDF