• Title/Summary/Keyword: Sound parameters

Search Result 607, Processing Time 0.026 seconds

Sound Characteristics and Hand of Fabrics for Blouse (블라우스용 직물의 소리 특성과 태)

  • 이은주;조길수
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.4
    • /
    • pp.605-615
    • /
    • 2000
  • This study was carried out to investigate sound characteristics including sound parameters and subjective sensation, and primary hand values related with sound of fabrics for blouse, and furthermore to predict subjective sound sensation with mechanical properties and sound parameters. Sound of specimens was analyzed by FFT. Level pressure of total sound(LPT), loudness(Z), coefficients of autoregressive(AR) functions for fitting the spectra, and sound color factors(ΔL and Δf) were obtained as sound parameters. Primary hand values for women's thin dress were calculated by using KES-FB. Subjective sensation for sound including softness, loudness, sharpness, clearness, roughness, highness, and pleasantness was evaluated by free modulus magnitude estimation. The results were as follows; 1. Fabrics for blouse showed similar spectral shapes to one another in that amplitude values were lower in most ranges of frequencies than fabrics for other uses. 2. It was found that fabrics for blouse were less louder because LPT, loudness(Z), and ARC values were lower than other fabrics. 3. Primary hand values indicated that specimens were soft-touched, flexible, and less crisp. Among primary hands related with sound, Shari values were higher for silk fabrics than for synthetic ones, while the values for Kishimi were similar, 4. Fabrics for blouse were rated more highly for softness, clearness, and pleasantness than for loudness, sharpness. roughness, and highness. Silk fabrics were evaluated more pleasant than synthetic fabrics. 5. Subjective sensation for sound of blouse fabrics were predicted with mechanical properties and physical sound parameters.

  • PDF

Analysis of Sound Quality Parameters of Sound Sources applied for Soundscape Design (사운드 스케이프 적용 음원의 음질 지수 분석)

  • Park, Hyeon-Ku;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.814-819
    • /
    • 2004
  • When we evaluate sound, there are various methods for noise such as A-weighted SPL(sound pressure level), NC(noise criteria), NR(noise rating) and SIL(speech interference level) etc. however, it is not sufficient for the sounds supplied to public places used in soundscape design. Consequently it is needed to develop the tool for evaluating the good acoustical environment and futhermore quantifying the effect of improvement by supplying sound sources. In this study, it was tried to analyse the sound sources applied for soundscape design using sound quality parameters. The sound sources used were natural sound artificial sound. For the sound quality parameters, Loudness(L), Sharpness(S), Fluctuation strength(FL), Tonality(T), Roughness(R), Unbiased Annoyance(UA) were used and sound quality values were compared both natural and artificial sounds, depending on the convolution of sound sources with background noise, the duration, the frequency contents and the SPL. As a result, the values of L and UA have shown to be changed comparing to the other parameters, and it is necessary to analyse the correlation with subjects' responses.

  • PDF

RELATIONSHIP BETWEEN FABRIC SOUND PARAMETERS AND SUBJECTIVE SENSATION

  • Yi, Eunjou;Cho, Gilsoo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to investigate the relationship between fabric sound parameters and subjective sensation, each sound from 60 fabrics was recorded and analyzed by Fast Fourier transform. Level pressure of total sound (LPT), three coefficients (ARC, ARF, ARE) of auto regressive models, loudness (Z), and sharpness (Z) by Zwickers model were estimated as sound parameters. For subjective evaluation, seven sensation (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) was rated by both semantic differential scale (SDS) and free modulus magnitude estimation (FMME). As the results, the ARC values were positively proportional to both LPT and loudness (Z) values. In both of SDS and FMME, softness, clearness, and pleasantness were negatively correlated with loudness, sharpness, roughness, and highness. In regression models, softness and clearness by FMME were negatively affected by LPT뭉 ARC, while loudness, sharpness, roughness, and highness were positively expected. Regression models for pleasantness showed low values for R2.

  • PDF

A Study on a Method of U/V Decision by Using The LSP Parameter in The Speech Signal (LSP 파라미터를 이용한 음성신호의 성분분리에 관한 연구)

  • 이희원;나덕수;정찬중;배명진
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1107-1110
    • /
    • 1999
  • In speech signal processing, the accurate decision of the voiced/unvoiced sound is important for robust word recognition and analysis and a high coding efficiency. In this paper, we propose the mehod of the voiced/unvoiced decision using the LSP parameter which represents the spectrum characteristics of the speech signal. The voiced sound has many more LSP parameters in low frequency region. To the contrary, the unvoiced sound has many more LSP parameters in high frequency region. That is, the LSP parameter distribution of the voiced sound is different to that of the unvoiced sound. Also, the voiced sound has the minimun value of sequantial intervals of the LSP parameters in low frequency region. The unvoiced sound has it in high frequency region. we decide the voiced/unvoiced sound by using this charateristics. We used the proposed method to some continuous speech and then achieved good performance.

  • PDF

Sound Metric Design for Quantification of Door Closing Sound Utilizing Physiological Acoustics (생리음향을 이용한 도어 닫힘음의 정량적 평가를 위한 새로운 음질요소의 개발)

  • Shin, Tae-Jin;Lee, Seung-Min;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In previous works, psychoacoustic parameters have been used for objective quantification. However, these parameters do not agree well with subjective assessment. Therefore, the correlation between psychoacoustic parameters and the subjective rating of door closing sounds of sampled cars is low, and it is not sufficient to use psychoacoustic parameters as an objective metric to quantify the sound quality of door closing sounds. In this paper, a new method is proposed to objectively quantify the sound quality based on physiological acoustics and statistical signal processing. The gammatone filter, as a pre-processing, is used in models of the auditory system and kurtosis, which is the fourth-order moment of temporal signal, and is used to extract information about sound quality quantification for door closing sounds. The new metric obtained through the proposed method is highly correlated with subjective rating, and it is successfully applied to the quantification of the sound quality of door closing sounds.

Sound Quality Characteristics of Refrigerator Noise in relation to Autocorrelation Function and Psychoacoustical Parameters (ACF 및 심리음향 파라미터에 의한 냉장고 소음의 Sound qualify 평가)

  • Jeon, Jin-Yong;Sato, Shin-ichi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.661-665
    • /
    • 2006
  • This study investigates objective and subjective evaluations of refrigerator noise. To describe the fluctuations like a click, a rapid increase of sound level, a change of pitch, a transition into the stationary and ending phase, the psychoacoustical and autocorrelation function(ACF) parameters have been employed. First, subjective evaluation of the noisiness of 24 kinds of refrigerators was conducted. Then, the relationship between objective measures of the refrigerator noise on perceived noisiness was examined with multiple regression analyses. Sound Quality Indices using the psychoacoustical and ACF parameters were also developed. The important psychoacoustical parameters for evaluating noisiness are loudness and roughness of stationary phase. The relationship between the noisiness and the ACF parameters shows that sound energy ${\Phi}(0)$ and its fluctuations are important. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The fluctuation of pitch is expressed by ${\tau}_1\;and\;{\Phi}_1$ defined by the delay time and the amplitude of the first peak of the ACF.

  • PDF

Sound Characteristics and Mechanical Properties of Taekwondo Uniform Fabrics (태권도 도복 직물의 소리 특성과 역학적 성질)

  • Jin, Eun-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.486-491
    • /
    • 2012
  • This study examined the sound characteristics of Taekwondo uniform fabrics to investigate the relationship between the sound parameters and the mechanical properties of the fabric as well as to provide the conditions to maximize the frictional sound of the uniform. Frictional sounds of 6 fabrics for Taekwondo uniforms were generated by the Simulator for Frictional Sound of Fabrics. The frictional speeds were controlled at low(0.62 m/s), at mid(1.21 m/s) and at high(2.25 m/s) speed, respectively. The frictional sounds were recorded using a Data Recorder and Sound Quality System subsequently, the physical sound properties such as SPL(Sound Pressure Level) and Zwicker's psychoacoustic parameters were calculated. Mechanical properties of specimens were measured by KES-FB. The SPL, Loudness(Z) values increased while Sharpness(Z) value decreased. In the physical sound parameter, specimen E had the highest SPL value at low speed and specimen B at high speed. In case of Zwicker's psychoacoustic parameters, the commercially available Taekwondo uniform fabrics(E, F) showed higher values of Loudness(Z), Sharpness(Z), and Roughness(Z), that indicates they can produce louder, shaper and rougher sounds than other fabrics for Taekwondo uniforms. The decisive factors that affected frictional sounds for Taekwondo uniforms were W(weight) as well as EM(elongation at maximum load) at low speed and WC(compressional energy) at high speed.

Design Optimization by the Correlation between the Design Parameter and the Sound Quality of Small Turbo-fan (소형 터보홴 설계인자와 음질의 상관관계에 의한 설계 최적화)

  • Kim, Hooi-Joong;Jung, Young-Gyu;Lee, Jung-Soo;Lee, Seung-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.485-494
    • /
    • 2006
  • The state-of-the-art of low-noise fan design usually includes the consideration of optimal sound level and sound quality. The influential design parameters of the noise level by the centrifugal fan were selected based on the preliminary test. The centrifugal fans were designed according to the experiment plan method by specifying the selected design parameters. The experiment with these machined mock-up's of centrifugal impellers suggested the major design parameters among many, having impacts upon the indices of sound quality (e.g. loudness, sharpness, roughness and fluctuation strength) at the same operation point. With the response surface method, the major design parameters selected thereafter were analyzed to estimate each contribution upon the sound quality of the centrifugal fan, and the optimal values were drawn by the consideration of the sound quality levels and their regression equations. In addition, the validity of the regression equations was numerically verified by means of the coefficient of determination. Furthermore, the mechanism by which the centrifugal fan impeller influences the determinants of its sound quality was suggested.

Analysis of Physical Parameters for the Evaluation of HVAC Diffuser Noise (공기조화 취출구 소음 평가를 위한 물리지수 분석)

  • Park, Hyeon-Ku;Kim, Hang;Go, Seong-Seok;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • The diffuser noise of HVAC(heating ventilating and air-conditioning) uses dB(A) or NC as a indoor noise criteria that ASHRAE represents, and there is no specific guide line for application. According to the previous study, there are some problems like that even though the sound level of sound source is same, the NC shows different values, which makes the noise rating confused. This problem is caused by the frequency characteristics of sound source and its sound level. Therefore, appropriate evaluation method should be considered based on the subjective responses. This study aims to analyze the physical parameters appropriate for the evaluation of HVAC diffuser noise. To achieve this, recording of sound sources, calculation of physical parameters and psycho-acoustic experiment were carried out and the results were derived from the correlation analysis between physical parameters and subjective evaluatio

  • PDF

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF