• Title/Summary/Keyword: Sound exposure criteria

Search Result 7, Processing Time 0.024 seconds

Overview of anthropogenic underwater sound effects and sound exposure criteria on fishes (어류에 미치는 인위적인 수중소음 영향과 피해기준에 대한 고찰)

  • PARK, Jihyun;YOON, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.19-40
    • /
    • 2017
  • A scientific and objective sound exposure criterion for underwater sound damage on fish has been required since there has been many disputes between an underwater sound maker and a fish damage receiver. The existing criteria are still incomplete scientifically owing to a degree of variability of underwater sounds, diversity of fish hearing sensitivity and damage types, etc. This study reviews existing studies on a hearing mechanism of fish species, manmade underwater sound characteristics and sound exposure assessment parameters, and recent sound exposure criteria. A governing equation for damage coverage estimation and damage coverage dependency on sound source level, ambient noise and transmission loss are also reviewed and interpreted based on sound exposure environments. The foreign and Korean (National Environmental Dispute Medication Commission) criteria are reviewed and compared based on scientific aspects. In addition, the deficit and limit of Korean criteria are presented. The objective of this study is to give a direction for related researches and legislation of sound exposure criteria on fish.

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

Environmental Hazardous Assessment on Wood Panel Manufacturing Process (목재판넬 제조공정의 환경위험성평가)

  • Lee, Su-Gil;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.13-21
    • /
    • 2007
  • Personal and static sampling for formaldehyde, wood dust and noise monitoring, in accordance to the equipment running on the day, were carried out throughout wood panel manufacturing process. Even though the exposure level of formaldehyde and wood dust were below than exposure criteria, but the personal protective equipment(PPE) for those should be worn to everyone in the process because of its potential characteristics like carcinogenicity. Also a few local air extraction system above the cutting, grinding sections and organic blending room should be required. Most of the exposures of noise exposure were exceeded permitted exposure criteria, in case of Hopper operators, exposed to maximally 94dB(A) as LAeq 8hr, therefore active controls like PPE, monitoring, isolation etc. are necessary. The main sources of noise were caused on compressed air of the machinery, radio sound and operation noise like running machines, conveying, cutting, sawing, moving vehicles, storing and so on. For the comparison of control criteria in each country, the permitted exposure standards for above hazardous materials and noise in Korea, ACGIH and Australia were discussed. We have recognized that the Korean criteria should be discussed urgently to give the right information to employee and modified, if it is necessary.

Characteristics of Impulsive Noise of Waterfront Construction Site and Its Effects on Fishes (수변 공사에 의한 충격음의 특성과 어류에 미치는 영향)

  • Bae, Jong-Woo;Park, Ji-Hyun;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.928-934
    • /
    • 2009
  • Underwater impulsive sound such as underwater blasting noise, piling noise and stone breaking hammer affects marine animal hearing response and organs. This study describes the characteristics of various impulsive noise from waterfront construction site and their effect on fish. Time constant, peak pressure, energy and SEL(sound exposure level) of four different underwater impulsive sounds are quantified. Auditory and non-auditory tissue damage ranges are derived by comparing their quantities to the exposure criteria for fish. Damage ranges of auditory tissue and non-auditory tissue of underwater boring blast of 150 kg of charge, are about 100 m and 300 m, respectively. Other three impulsive sounds also gives damage effects but less than that of underwater boring blast.

Floor impact sound classification and setting Acceptable limit based on psychoacoustical evaluation (감성평가 기반 바닥충격음 등급화 및 수인한도 설정)

  • Kim, Sung Min;Hong, Joo Young;Jeon, Jin Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.7-9
    • /
    • 2014
  • An auditory experiment was conducted to establish annoyance criteria for floor impact noise in apartment buildings. Heavyweight floor impact sounds were recorded using an impact ball; the impact sound pressure level (SPL) together with the temporal decay rate (DR), which is quantified by the dB drop per second, was analyzed. For the experiment, A-weighted exposure levels of the heavy-weight floor impact sounds ranging 34~73 dB were evaluated at 3 dB intervals. Participants used a 7-point verbal scale to evaluate the level of annoyance from floor impact noise. The results show that the annoyance increases with increasing impact SPL and decreasing DR. Consequently, a classification and an acceptable level of floor impact sounds were proposed.

  • PDF

Evaluation of Environmental Comfort of Tractor Cabs (트랙터 안전캡의 환경 쾌적성 평가)

  • Hwang, Ki-Young;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In order to evaluate environmental comfort of tractor cabs, temperature, relative humidity and noise within the cab were taken from 31 tractors during plowing and rotovating operations. The temperature and humidity were evaluated with regard to the comfort zone of KS B ISO 14269-2 and PMV of ISO 7730. The noise was evaluated with regard to the permissible sound level of OSHA for daily exposure of 8 hours. The collected data indicated that thermal environment of the cabs was out of the comfort zone, which meant tractor operators worked under uncomfortable thermal conditions. Difference in the thermal comfort by tractor power and maker, and type of works was not found. However, 25% of the studied tractors showed PMV in a range of -0.5 to +0.5, which indicated their operators worked under the comfort criteria. PMV was improved when the cab was air-conditioned. Levels of measured cab noise were lower than the permissible criteria, and 76.7% of the studied tractors had cab noise ranged from 75 to 85 dBA. There was a tendency that high powered tractors, rotovating operations and locally-made tractors had greater cab noise levels. However, their differences were insignificant.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.